首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究硅酸盐体系中电压、频率和占空比等电参数对AZ91D镁合金微弧氧化膜层的厚度、表面形貌、相组成及耐蚀性的影响,并对膜层的表面孔隙率及表面孔径进行定量分析。结果表明:电压对膜层微观结构及耐蚀性能的影响起主导作用,频率的影响次之,占空比的影响较小;随电压升高,膜层厚度、表面孔隙率及耐蚀性均增大;频率与占空比对膜层厚度的影响不大,但对表面孔隙率和耐蚀性有一定的影响;频率为800Hz、占空比为15%时,膜层耐蚀性较好,此时所得膜层的表面孔隙率较小,分别约为8%和10%,膜层表面上孔径在1~3μm的微孔比例都大于60%;膜层表面孔径和孔隙率的定量评价与膜层形貌分析相结合可为膜层耐蚀性的分析提供有力依据。  相似文献   

2.
硅铝复合电解液体系中利用单脉冲工作模式在AZ9ID镁合金表面制备了一系列微弧氧化膜层.采用四因素三水平正交实验研究单脉冲工作模式下电流密度、正占空比、氧化时间和频率对膜层耐蚀性的影响.结果表明:各电参数对膜层耐蚀性的影响程度由高到低排列依次是氧化时间、正占空比、电流密度、频率;制备较优耐蚀性膜层的电参数为:电流密度22 A/dm2,正占空比40%,氧化时间12 min,频率500 Hz;在较优工艺方案下制得的试样与镁合金相比,其自腐蚀电位提高了36.4 mV,腐蚀电流密度下降了1个数量级.  相似文献   

3.
电参数对镁合金微弧氧化膜厚度的影响   总被引:1,自引:0,他引:1  
在自行研制的电解液中,采用四因素三水平正交实验,系统研究频率、占空比、电流密度和终电压对AZ91HP镁合金氧化膜厚度的影响。结果表明,各因素的主次顺序为终电压〉电流密度〉占空比〉频率。终电压对氧化膜厚度影响显著,电流密度对氧化膜厚度有影响但不显著,占空比和频率对氧化膜厚度无显著影响。氧化膜层的耐蚀性并不是仅仅由厚度决定,而是由多种因素综合作用的结果。  相似文献   

4.
能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响   总被引:17,自引:0,他引:17  
用自制的微弧氧化控制电源研究了在硅酸盐溶液体系中电流密度、频率、占空比等能量参数对镁合金微弧氧化陶瓷层的厚度及耐蚀性的影响,并优化了微弧氧化工艺.结果表明:随电流密度增加,陶瓷层厚度呈现线性增加,而耐蚀性表现出先增后减的趋势,在电流密度为3 A/dm2~4 A/dm2时,陶瓷层的耐蚀性最佳;恒流微弧氧化方式下频率与占空比对陶瓷层的厚度影响不大,但对其耐蚀性有一定影响,随频率增加,陶瓷层的耐蚀性越来越好,随占空比增大,陶瓷层的耐蚀性逐渐变差;工艺参数优化所制得陶瓷层的耐蚀性较参数恒定控制有一定的提高.  相似文献   

5.
AZ91D镁合金微弧氧化电参数对其耐蚀性的影响   总被引:1,自引:2,他引:1  
在铝酸盐体系中对AZ91D镁合金进行微弧氧化处理。利用田口式实验设计法探讨微弧氧化过程电参数对膜层耐蚀性的影响,确定了最佳工艺参数为:电压180V,氧化时间30min,频率50Hz,占空比30%。用交流阻抗分析膜层的耐腐蚀性能,结果表明:最佳工艺条件下所制备微弧氧化,膜层电阻比镁合金基体提高了2个数量级,耐蚀性有所增强。  相似文献   

6.
AZ91D镁合金微弧氧化膜耐蚀性的试验研究   总被引:6,自引:0,他引:6  
研究了AZ91D镁合金微弧氧化膜在复合铝酸盐溶液中的耐蚀性。利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了AZ91D镁合金微弧氧化膜的物相和表面形貌;利用IM6e型电化学工作站测量了氧化膜的电化学阻抗和稳态电流/电位极化曲线;利用CMB-1501B型便携式瞬时腐蚀速度测量仪测量了氧化膜的腐蚀电流密度Icorr和年腐蚀深度MMA。试验结果表明,微弧氧化的镁合金耐蚀性提高了2~3个数量级,镁合金微弧氧化膜主要由MgO、MgAl2O4、Al12Mg17组成。  相似文献   

7.
微弧氧化技术可以实现对金属表面的高耐蚀、耐磨等改性,传统微弧氧化所得陶瓷膜具有多孔结构,影响了其耐蚀性能及高温氧化性能。本文针对氧化膜多孔结构与腐蚀性能之间的关系开展基础研究。采用外加电场微弧氧化技术实现自封闭孔结构,并研究了不同孔结构膜层的耐蚀性能;讨论了封孔过程中胶体运动-电位-孔结构表征之间的规律性关系,评价了自封孔后膜层腐蚀性能。主要研究结果表明:膜层中的多孔结构是腐蚀介质的通道,自封孔后耐蚀性能提高,此外,耐蚀性与孔隙率及封孔填充物的成分和形态具有极大的相关性,通过调整外加电场强度和时间可以实现对自封孔的调控,从而改善耐蚀性能。  相似文献   

8.
采用微弧氧化技术在AZ31B镁合金表面制备陶瓷层,利用其表面多孔结构借助电泳技术沉积有机膜层,对比研究陶瓷层和复合膜层表面粗糙度、表面及截面形貌、电化学性能及划伤腐蚀特性。结果表明:陶瓷层表面放电微孔被电泳层完全填充并形成均匀膜层,复合膜层表面粗糙度明显降低;微弧电泳复合膜层腐蚀电流密度与陶瓷层和基体相比分别降低2个和4个数量级,极化电阻分别增大2个和4个数量级,腐蚀倾向降低;微弧电泳复合膜层电化学阻值与陶瓷层相比增加4个数量级,同时电容值降低4个数量级,耐蚀性显著提高;由于陶瓷层与电泳层的机械嵌合作用,复合膜层划伤腐蚀过程表现为基体腐蚀及陶瓷层与基体界面的破坏,复合膜层界面处结合完好。  相似文献   

9.
《铸造技术》2015,(9):2248-2251
在硅酸盐体系中,采用恒压模式对高稀土镁合金进行微弧氧化获得陶瓷膜防护涂层。通过正交试验,以陶瓷膜的耐腐蚀性和腐蚀电流密度为评价指标,对硅酸盐体系电参数工艺进行了研究,得到最佳电参数工艺为:频率800 Hz,正电压为500 V,负电压为250 V,占空比为20%,氧化时间为15 min,其中正电压对微弧氧化膜的影响程度最大。用扫描电镜分析了最佳工艺参数下的表面形貌和腐蚀后的表面形貌。结果表明:采用双极性非对称脉冲电源所得到的微弧氧化膜表面形貌只存在显微孔而不存在微裂纹,在腐蚀过程中点蚀拓展阻力比较大,提高了耐蚀性。  相似文献   

10.
目的 探索氧化时间对AZ31B镁合金表面微弧氧化(MAO)涂层结构及性能的影响规律。方法 通过恒压MAO的方法在硅酸盐电解液体系中制备涂层,采用扫描电子显微镜(SEM)、Image-J图像分析法、测厚仪、表面粗糙度仪、摩擦磨损试验机、盐雾试验箱来研究涂层表面微观形貌、表面孔隙率、厚度、粗糙度、摩擦性能以及耐蚀性能。结果 涂层孔隙率随着氧化时间的延长而减小,氧化25 min所得涂层孔隙率最小,为5.404%。涂层厚度随时间的延长而增大,但是厚度增长速率减小,氧化5 min时涂层厚度为9 μm,而25 min时涂层厚度为10.4 μm。涂层粗糙度与摩擦系数随时间的增加而增大,磨损率随氧化时间的增加,呈现先增大后减小的趋势,氧化15 min所得样品磨损率最高,氧化5 min所得涂层耐蚀性最差,氧化25 min的涂层耐蚀性最好。结论 恒压条件下,氧化时间的延长可以有效地减小涂层表面孔隙率,增加涂层厚度,显著改善涂层的耐磨、耐蚀性能。  相似文献   

11.
电解液组分对AZ91D镁合金微弧氧化膜层耐蚀性的影响   总被引:1,自引:1,他引:0  
在含有Na2SiO3、NaAlO2、Na2B4O7、NaOH、C3H8O3及C6H5Na3O7的硅铝复合电解液中,采用恒电流方式对AZ91D镁合金进行微弧氧化处理。利用扫描电镜、膜层测厚仪、全浸泡试验和极化曲线等方法研究了陶瓷膜层的形貌特征、厚度以及耐蚀性能。结果表明,随着Na2SiO3、NaAlO2、Na2B4O7、NaOH、C3H8O3及C6H5Na3O7含量的增加,微弧氧化陶瓷膜层的耐蚀性基本均呈现出先提高后降低的变化趋势;经正交试验优化后,当电解液中Na2SiO3、NaAlO2、Na2B4O7、NaOH、C3H8O3和C6H5Na3O7的含量分别为15g/L、9g/L、2g/L、3g/L、5mL/L及7g/L时,膜层耐蚀性最好。经过微弧氧化处理后试样的腐蚀电流密度较镁合金基体降低了近2个多数量级,自腐蚀电位提高了近73mV,镁合金的耐蚀性能得到了显著提高。  相似文献   

12.
镁合金微弧氧化陶瓷层的耐蚀性   总被引:42,自引:7,他引:42  
通过NaCl中性盐雾腐蚀试验定性地分析镁合金微弧氧化陶瓷层的耐蚀性,初步研究了陶瓷层表面微观结构对其耐蚀性的影响。结果表明:镁合金微弧氧化陶瓷层的微观组织结构的结合方式和生长方式直接影响其耐蚀性,微弧氧化试样的耐蚀性与陶瓷的厚度有关,陶瓷层厚度的增加并不一定能使其耐蚀性提高。  相似文献   

13.
电参数对AZ91D镁合金微弧氧化过程和膜层的影响   总被引:1,自引:0,他引:1  
在硅铝复合电解液中,采用不同的电参数在AZ91D镁合金表面制备微弧氧化膜。利用扫描电镜(SEM)观察了膜层表面微观形貌;通过膜层测厚仪测量了氧化膜的厚度。结果表明,随着电流密度、占空比或者氧化时间的增大,膜层的不均匀程度都逐渐增大,表面放电孔洞尺寸变大,数量减少;电流密度大于10A/dm2或氧化时间超过15min时,微弧氧化过程会出现熄弧阶段;膜层厚度随着电流密度的增加而呈现近似线性增加后趋于稳定的变化趋势;而随着占空比或者氧化时间的延长,膜层厚度则逐渐增大。  相似文献   

14.
在硅酸盐体系中对AZ91D镁合金进行微弧氧化处理,探讨膜层致密性的研究方法,推导膜层密度的计算公式,定量分析膜层表面微孔的大小、分布及表面孔隙率随时间的变化,研究上述因素对膜层耐蚀性的影响。结果表明:成膜物质基本不随时间的变化而发生改变,使膜层的致密性可以通过密度来间接研究;随着时间的延长,膜层表面微孔逐渐变大,各微孔之间的大小差异及形状差异不断增大,膜层的表面孔隙率从8%逐渐增大到15%。处理时间为5和10 min时,膜层较致密,20 min后,膜层的致密度明显减小,时间继续延长,致密度基本保持不变。受膜层较大厚度、较高致密度、较少表面缺陷等多种优势共同存在的影响,30 min时,试样的耐蚀性最好。  相似文献   

15.
终止电压对MB8镁合金微弧氧化膜耐蚀性的影响   总被引:2,自引:0,他引:2  
采用SEM、XRD、动电位极化曲线及电化学阻抗等测试方法,研究了MB8镁合金微弧氧化过程中不同终止电压下获得的陶瓷膜层的耐蚀性能.结果表明:终止电压越高,膜层越厚;微火花阶段,膜层表面均匀、结晶细致,腐蚀电流密度较小,阻抗较大;弧放电阶段,膜层孔径变大,陶瓷层内显微缺陷增多,腐蚀电流密度增大,阻抗减小.由此得出结论:膜层耐蚀性能由膜层厚度与终止电压共同决定,微火花放电末期膜层的耐蚀性能优于弧放电阶段的耐蚀性能.  相似文献   

16.
通过改变硅酸盐体系电解液中KF和Na2SiO3的浓度,定量分析氟化钾与硅酸钠浓度配比(简称氟硅比)对AM60B镁合金微弧氧化膜层微观结构及耐蚀性的影响.结果表明:主盐Na2SiO3在微弧氧化成膜中必不可少.当电解液中含有KF时(氟硅比大于0),随着氟硅比的增大,成膜反应加剧,膜层表面的孔隙率和表面大孔(>3 μm)数目...  相似文献   

17.
添加剂对AZ91D镁合金微弧氧化膜的影响   总被引:2,自引:0,他引:2  
以铝酸钠和氢氧化钠为主要组元,分别添加蒙脱石、EDTA、阿拉伯树胶的电解液对AZ91D镁合金进行微弧氧化,并用sEM、EDS、XRD和动电位极化曲线分析其微观组织结构和耐腐蚀性.结果表明,3种膜层的表面呈蜂窝状微观形貌,陶瓷氧化膜中主要存在相有MgAl2O4、MgO和Mg2siO4.与AZ91D镁合金基体相比其耐蚀性均有不同程度提高,其中以蒙脱石添加后膜层的耐蚀效果最好.  相似文献   

18.
采用扫描电镜和金相显微镜系统研究了系列电压下AZ91D镁合金的表面氧化膜形成过程,讨论了微弧氧化膜层形成规律及成膜机制。结果表明:在试验电压范围内,微弧氧化起弧过程可以分为3个阶段:第1阶段为局部腐蚀与氧化相互竞争阶段,在表面缺陷处首先开始腐蚀,形成疏松的氧化膜,同时伴随水的电解过程;第2阶段为微区放电阶段,表面整体被氧化,形成少量孔洞的较致密氧化膜层,水的电解过程加剧;第3阶段为弧光放电阶段,氧化剧烈,膜层在电弧作用下击穿形成连通的孔洞,且孔洞直径和数量增加。  相似文献   

19.
在微弧氧化电解液中引入了KOH添加剂,并在镁合金表面制备了陶瓷膜层,研究了KOH浓度对微弧氧化过程中的膜层生长及膜层耐腐蚀性能的影响。结果表明:在镁合金微弧氧化电解液中引入KOH添加剂可以有效降低微弧氧化过程的起弧电压和工作电压,但是KOH浓度过高会使起弧电压增大;KOH的引入会使膜层中的大尺寸孔隙数目减少,孔隙率提高。为了得到较高的膜层生长速率和较好的耐蚀性,电解液中的KOH剂量以1~3 g/L为宜。  相似文献   

20.
利用微弧氧化技术对AZ91D镁合金在硅酸盐和锆盐溶液中进行表面陶瓷化处理,发现电参数对膜层厚度有很大影响。并采用IM6e型电化学工作站,对微弧氧化镁合金进行电位极化曲线测量。通过电化学测量对微弧氧化镁合金的腐蚀行为进行分析。用处理好的镁合金进行腐蚀实验,用失重法和极化法测试其耐蚀性,发现电解液中锆元素会大大提高膜层的耐蚀性。同时通过XRD分析发现硅酸盐电解液中制备的陶瓷膜主要由Mg2SiO4、MgO和MgF2等相组成,锆盐电解液中制备的陶瓷膜主要由MgO、MgF2和ZrO2相组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号