首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

2.
利用Gleeble-3800热模拟机研究Incoloy901高温合金在变形温度950~1150℃,应变速率0.005~1 s-1,真应变0.6下的热变形行为。结果表明:变形温度大于1000℃,应变速率大于0.01 s-1时,Incoloy901合金真应力-应变曲线呈现动态再结晶特征。根据应力-应变曲线构建Incoloy901合金的本构方程与热加工图,得出形变激活能Q=439.401 k J/mol,最佳热加工工艺为:变形温度1050~1150℃,应变速率0.005~0.1 s-1,在此工艺范围内合金的高温变形功率耗散系数η较高,可达37%,能获得较好的动态再结晶组织。  相似文献   

3.
AZ80合金高温变形行为及加工图   总被引:6,自引:0,他引:6  
为实现AZ80合金塑性成形的数值模拟和制定其合理的热加工工艺,利用热模拟机对AZ80合金进行不同变形温度和应变速率的高温压缩变形行为研究.结果表明:AZ80合金的高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的AZ80合金高温变形的本构模型较好地表征其高温流变特性,模型计算精度高;同时,利用建立的AZ80合金的DMM加工图分析其变形机制和失稳机制,从提高零件力学性能角度考虑,可以优先选择变形温度为300~350 ℃、应变速率为0.001~0.01 s-1的工艺参数.  相似文献   

4.
通过Gleeble-1500D数控动态热-力学模拟试验机对铸态C19400合金进行了高温等温热压缩试验,研究了该合金在变形温度700~950℃,应变速率0.001~10 s~(-1)条件下的高温变形行为。结果表明:在同一应变速率下,铸态C19400合金的流变应力随温度的升高而降低,在同一变形温度下,合金流变应力随应变速率的升高而升高。应变速率为0.001、0.01、0.1和1 s~(-1)时,动态软化以动态回复为主;应变速率为10 s~(-1)时,动态软化以动态再结晶为主,且再结晶程度随变形温度的升高而增加。此外,本文提出了一种基于MATLAB平台编程计算本构方程的方法,得到了基于Arrhenius双曲正弦本构关系的铸态C19400合金峰值流变应力本构方程,并计算得到该本构方程计算应力与试验应力的相对误差AARE为2.71%、相关系数R为0.9977,表明计算结果与试验结果高度吻合。  相似文献   

5.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

6.
在应变速率0.01~10.0 s~(-1)以及热变形温度300~500℃下,通过Gleeble-1500热模拟试验机对3003铝合金进行高温等温压缩实验。结果表明,该合金具有正的应变速率敏感性。当变形温度低于350℃时,合金的热变形机制以动态回复为主;应变速率大于1.0 s~(-1)时,合金的热变形机制以不连续动态再结晶为主。建立了综合考虑应变速率、变形温度以及应变对流变应力影响的本构方程,本构方程中的材料常数可以表示为应变的4次多项式函数。模拟结果表明:预测曲线与实验曲线吻合较好,流变应力的实测值与预测值的均方根误差以及平均相对误差分别为0.99814和5.72%。所建立的本构方程计算精度较高,可以为合金热变形流变应力的预测提供参考依据。  相似文献   

7.
GH625镍基合金的高温压缩变形行为及组织演变   总被引:2,自引:0,他引:2  
在Gleeble-1500D热模拟机上采用等温压缩实验研究GH625合金的高温压缩变形行为,获得合金在温度为1000~1200℃、应变速率为10-2~10s-1的条件下的真应力—应变曲线,并在考虑摩擦和变形热效应的基础上对真应力—应变曲线进行修正。对修正后的峰值应力进行线性回归,得到合金的高温材料常数:Q=635.38kJ/mol,α=0.008404MPa-1,n=3.52。通过非线性回归建立GH625合金包含应变量的高温变形本构模型。在应变速率为0.1s-1时,随着热变形温度的升高,合金发生动态再结晶的体积分数随之增加,在1000~1100℃发生部分动态再结晶,当温度达到1200℃时,发生完全动态再结晶,此时平均晶粒尺寸约为22.21μm。  相似文献   

8.
采用Gleeble-3500热模拟机对GH690-RE合金进行高温压缩变形试验,在温度为950~1200℃,应变速率为0.001~2.000s-1的变形条件下测定并分析其应力-应变曲线。结果表明,流变应力随变形温度的升高和应变速率的降低而降低,且流变应力特征可用经典的双曲正弦模型描述。以应力-应变曲线为基础,采用线性回归法确定了GH690-RE合金的常数,建立了GH690-RE合金的高温本构关系方程。  相似文献   

9.
利用Gleeble-3800热模拟试验机,在温度为950~1150℃、应变速率为0.01~10 s~(-1)、变形量为60%条件下,研究汽轮机叶片用GY200镍基合金的高温塑性变形及动态再结晶行为,并绘制了合金的热加工图。结果表明:GY200合金的真应力–应变曲线具有动态再结晶特征,峰值应力随变形温度的降低或应变速率的升高而增加,发生动态再结晶的临界应变随温度增加而降低。在真应力–应变曲线的基础上,建立了材料热变形本构方程,其热激活能为353.792 kJ/mol,表明利用W替代合金中的Mo后,降低了合金的热激活能。合金的最佳热加工的温度区间为1000~1150℃,应变速率0.01~0.1 s~(-1),效率值达到0.3以上。  相似文献   

10.
在Gleeble 3500热模拟试验机上,对半连续铸造Al-Mn-Er-Zr合金棒坯进行变形温度350~500℃、应变速率0. 01~10 s-1的高温压缩试验,建立了高温热变形稳态流变方程,并对流变曲线进行了温升修正。结果表明,在相同应变速率下,变形温度的升高会使Al-Mn-Er-Zr合金更容易发生动态再结晶;在相同变形温度下,随着应变速率的增大,Al-Mn-Er-Zr合金中流线组织逐渐粗化,锯齿化程度增大,动态再结晶晶粒有所细化。进行了Al-Mn-Er-Zr合金的应力-应变本构方程建立与求解,得出了在变形温度350~500℃、应变速率0. 01~10 s-1时的高温变形稳态流变方程;高温压缩过程中由温升造成的计算应力与实测应力的误差在10%以内,高温热变形稳态流变方程能够较好的表征Al-Mn-Er-Zr合金的高温流变行为。  相似文献   

11.
Compared to conventional Mg-Al and Mg-Zn system magnesium alloys, the Mg-Zn-Y-Zr heat-resistant alloy exhibits high thermal stability due to the addition of Y earth element, which is an ideal candidate for producing high strain rate superplasticity (HSRS, strain rate >= 1 x 10(-2) s(-1)). Recently, the HSRS of Mg-Zn-Y-Zr alloy was achieved by friction stir processing (FSP), because the FSP resulted in the generation of fine and equiaxed recrystallized grains and fine and homogeneous second phase particles. However, the study on superplastic deformation mechanism of FSP Mg-Zn-Y-Zr alloy at various parameters is limited relatively. Therefore, at the present work, six millimeters thick as-extruded Mg-Zn-Y-Zr plates were subjected to FSP at relatively wide heat input range of rotation rates of 800 r/min to 1600 r/min with a constant traverse speed of 100 mm/min, obtaining FSP samples consisting of homogeneous, fine and equiaxed dynamically recrystallized grains and fine and uniform Mg-Zn-Y ternary phase (W-phase) particles. With increasing rotation rate, within the FSP samples the W-phase particles were broken up and dispersed significantly and the recrystallized grains were refined slightly, while the fraction ratio of the high angle grain boundaries (grain boundaries misorientation angle >= 15 degrees) was increased obviously. Increasing rotation rate resulted in an increase in both optimum strain rate and superplastic elongation. For the FSP sample obtained at 1600 r/min, a maximum elongation of 1200% was achieved at a high-strain rate of 1x10(-2) s(-1) and 450 degrees C. Grain boundary sliding was identified to be the primary deformation mechanism in the FSP samples at various rotation rates by superplastic data analyses and surfacial morphology observations. Furthermore, the increase in rotation rate accelerated superplastic deformation kinetics remarkably. For the FSP sample at 1600 r/min, superplastic deformation kinetics is in good agreement with the prediction by the superplastic constitutive equation for fine-grained magnesium alloys governed by grain boundary sliding mechanism.  相似文献   

12.
为研究锻态C-276镍基合金的热变形行为,采用Gleeble-3180D热模拟试验机对该合金在变形温度950~1200℃以及应变速率0.01~10 s-1条件下进行一系列热压缩实验。结果表明,合金的流变应力曲线都呈现明显的动态再结晶特征,并且流变应力随变形温度的提升或者应变速率的下降而降低。根据Arrhenius模型构建该合金峰值应力下的本构方程,得出合金的变形激活能为510.484 kJ/mol。依据材料动态模型绘制合金在0.6应变下的热加工图,并结合组织分析提出该合金最优的热加工参数为(1100℃,0.01 s-1)以及(1150℃,0.01~1 s-1)。另外,合金的组织变化规律表明,温度的增加或应变速率的降低能够促进合金的动态再结晶晶粒的形核与长大。  相似文献   

13.
ZK60镁合金热压缩变形流变应力行为与预测   总被引:4,自引:0,他引:4  
在变形温度为523---673 K, 应变速率为0.001---1 s-1的条件下, 采用Gleeble--1500热模拟试验机对ZK60镁合金的热变形行为进行了研究. 结果表明, ZK60镁合金流变应力随变形温度升高和应变速率的降低而减小. 其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段, 但在温度较高和应变速率较小时, 过渡阶段不很明显. 建立了一个包含应变的流变应力预测模型, 模型中的9个独立参数可以通过非线性最小二乘法拟合求得, 预测的流变应力曲线与实验结果吻合较好.  相似文献   

14.
研究ZK60合金的高温流变应力行为。分别采用Kocks-Mecking模型和Avrami方程对合金的应变强化和动态再结晶过程进行模拟,在此基础上,构建一个考虑合金动态再结晶软化的流变应力方程并对流变应力进行预测。结果表明:预测曲线与实验结果具有很高的相关系数,所构建的流变应力方程能准确地描述热变形过程中合金的流变应力行为。微观组织观察表明在变形初期合金组织主要为动态回复组织,随着应变增加,逐渐转变为再结晶组织。  相似文献   

15.
采用高温等温压缩试验并利用修正后的流变曲线,研究了2099 Al-Li合金在变形温度为300~500℃,应变速率为0.001~10 s-1,变形量(真应变)为0.7条件下的流变行为。结果表明:可用包含Z参数的双曲正弦形式来表征变形温度和应变速率对2099 Al-Li合金热变形行为的影响;将应变作为影响因素,求解了不同应变量下的材料常数,并构建了考虑应变的本构模型;统计分析结果表明,除了在变形温度为300℃,应变速率为10 s-1之外,该模型能够很好的预测2099 Al-Li合金高温流变行为。  相似文献   

16.
采用Gleeble-1500热模拟实验机对一种新型AM80-xSr-yCa镁合金进行高温压缩变形实验,研究其在温度300℃~450℃、应变速率0.01s-1~10s-1条件下的流变行为。高应变速率下,试样的变形热带来的温升不可忽略,对真应力-真应变的测量值进行相应修正后,求得了本构方程中的系列常量。结果表明,应变速率和变形温度的变化,强烈影响着合金流变应力的大小,流变应力值随变形温度的降低和应变速率的提高而增大;金相组织观察表明,动态再结晶是该实验条件下晶粒细化和材料软化的主要机制,再结晶的程度主要受变形参数影响。变形温度越高,变形量越大,动态再结晶进行的越充分;应变速率越大,再结晶平均晶粒尺寸就越小。  相似文献   

17.
ZK60及ZK60 (0.9Y)镁合金高温变形行为的热模拟研究   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟试验机进行压缩试验,研究ZK60和ZK60(0.9Y)镁合金在变形温度为473~723K、应变速率为0.001~1s-1范围内的变形行为,计算了应力指数和变形激活能,并采用Zener-Hollomon参数法构建了合金高温塑性变形的本构关系。结果表明:在试验变形条件范围内,合金的真应力-真应变曲线为动态再结晶型;在573~723K范围内,应力指数随着变形温度的升高而增加,变形激活能随着变形温度和应变速率的改变而变化。对比ZK60合金,ZK60(0.9Y)合金的变形激活能降低了30%,且材料常数n和A值均降低。  相似文献   

18.
本文研究了变形温度、应变速率和变形量对挤压态ZA21镁合金的热变形行为及组织演变的影响规律,建立了热加工图,并对失稳区、安全区和最佳加工区试样进行浸泡失重和电化学试验,研究ZA21镁合金不同区域内的腐蚀行为。结果表明:在高温低应变速率时,ZA21镁合金的动态软化机制以动态回复为主,低温高应变速率时,以动态再结晶为主;最佳加工工艺温度为300~350℃、应变速率为0.001~0.01s-1,这主要与完全动态再结晶的产生有关;在同一加工工艺下,随变形量增加,ZA21镁合金自腐蚀电位明显正移,自腐蚀电流密度明显下降,当变形量增加至60%时,自腐蚀电流密度可降低3~4个数量级,这主要是因为晶粒细化导致合金表面形成了更加致密的氧化膜;但加工失稳区的微观组织存在楔形裂纹和明显孔洞,所以腐蚀速率相对较大。  相似文献   

19.
在变形温度为200~400℃、应变速率为0.001~1s-1条件下,对ZK60镁合金进行热压缩实验,建立一个单隐层前馈误差反向传播人工神经网络模型,研究该镁合金的流变行为。模型的输入参数分别为变形温度、应变速率和应变,输出为流变应力,中间隐含层包含23个神经元,并采用Levenberg-Marquardt算法对此网络模型进行训练。结果表明:ZK60镁合金的流变应力随变形温度升高和应变速率降低而减小;其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在较高温度和较低应变速率时,过渡阶段不很明显;所建神经网络模型可以很好地描述ZK60镁合金的流变应力,其预测值与实验值吻合很好;利用该模型预测的变形温度和应变速率对流变应力的影响结果与一般热加工理论所得结果一致。  相似文献   

20.
通过热模拟压缩试验研究了50SiMnVB合金钢在应变速率为0.01-10s-1、温度为800-1000 ℃条件下的高温热变形行为.利用金相显微镜观察了合金压缩变形后的显微组织,结果表明:50SiMnVB合金钢在高温热变形过程中发生了典型的动态回复和动态再结晶行为,其中,动态再结晶以连续再结晶的形式进行,且应变速率越小、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号