首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
张能波  李凯 《微波学报》2020,36(5):66-69
研制了一款用于毫米波GaN 固态功放的预失真线性化器。采用预失真线性化技术,通过调整I、Q 两路正交电路(I 路由线性可调衰减器构成,Q 路由二极管非线性电路构成)的外加偏置电压,可以实现预失真线性化器的幅度和相位分别可调。将该线性化器与工作频率为30 GHz 的毫米波GaN 固态功放级联测试,双音激励信号频率间隔为5 MHz,三阶互调(IMD3)可以改善约10 dB。  相似文献   

2.
随着通信技术的发展,行波管预失真电路的研究变得越来越重要。该文针对基于肖特基二极管的非线性发生器,首次分析了二极管SPICE(Simulation Program with Integrated Circuit Emphasis)模型参数中零偏压结电容和串联电阻对预失真扩张曲线的影响。对目前的微带预失真电路工作在K波段以下,绝对或相对带宽一般不超过1.8 GHz和4%,需在输入及输出端加隔离器等不足,基于ADS(Advanced Design System)软件设计并加工了一种用于中心频率30 GHz,绝对和相对带宽为2 GHz和6.67% 的毫米波行波管的微带预失真电路。分别测试行波管和级联线性化器后的行波管,29 GHz, 30 GHz和31 GHz的增益和相位压缩量分别可以从7.5 dB和40 , 7.3 dB和50 , 7.1 dB和59改善到3.8 dB和10 , 3.7 dB和12 , 2.4 dB和15以内。双音测试结果表明,为了达到通信中载波与三阶交叉调制分量抑制比(C/IM3)25 dBc的要求,单独行波管在29 GHz, 30 GHz和31 GHz时需分别回退17 dB, 18 dB和18 dB,而加入线性化器后的行波管,只需分别回退12 dB, 9 dB和8 dB,也即加线性化器可改善5 dB, 9 dB和10 dB,极大地提升了行波管的线性度,具有重要工程应用价值。  相似文献   

3.
为了改善功率放大器的三阶交调失真,提出了一种基于90°分支线电桥的C波段预失真线性化器,使用肖特基二极管产生非线性信号。通过改变线性化器的偏置电压及电容,可调整线性化器的增益扩张和相位延迟特性,与功放级联后对功放的三阶交调失真有改善作用。将该线性化器应用到工作频率为7 GHz,饱和功率为20 dBm的放大器上,在输出功率回退5 dBm处对放大器的三阶交调有10 dBc的改善。  相似文献   

4.
模拟预失真技术是改善行波管放大器非线性失真的一种有效方法,但补偿精度较低的缺点是制约其进一步发展的关键因素。增益相位独立调节技术和补偿曲线形状调节技术是提升模拟预失真补偿精度的重要技术。提出了一种适用于Ka波段行波管放大器的高精度模拟预失真器,该预失真器采用双路矢量合成式结构,在29~31 GHz 范围内,通过调节二极管偏置电压可以同时实现补偿曲线形状调节和增益相位扩张量独立调节,有效提升了补偿精度。与行波管放大器的联合测试结果表明,在30 GHz 时,该预失真器可以将行波管放大器的增益压缩从5.3 dB 减小到1.2 dB,相位偏移从62°减小到6.5°。线性化后的行波管放大器的非线性失真明显降低,在输出功率回退5 dB 时,三阶互调系数提高了9.3 dB。  相似文献   

5.
提出了满足行波管功率放大器(TWTA)要求的毫米波段的可调预失真线性化器,该预失真器基于90°定向耦合器、GaAs肖特基二极管、微带线和负载电阻,产生预失真信号。通过调节GaAs肖特基二极管的偏置电压、微带线电长度及负载电阻可以得到不同的增益扩展和相位扩张效应,在频率为29 GHz~31 GHz和额定输入功率范围内,增益扩展范围为5 dB~11.5 dB,相位扩张范围为35°~65°。仿真及实测结果表明:该预失真电路可调性强,满足通信工程TWTA的补偿需求。  相似文献   

6.
放大器的非线性失真特性严重影响信号的传输质量,射频预失真是一种有效改善行波管非线性度的方法。本文利用反并联肖特基二极管完成了X波段预失真线性化器的设计。仿真结果表明,在8.4GHz~8.6GHz频率范围和一定输入功率内,各个频点处增益扩张量保持在6dB左右,工作频带内增益平坦度在1dB以内,相位扩张基本保持在45°左右。  相似文献   

7.
本文研制了一款用于毫米波频段,且频率响应十分优良的模拟预失真器,该预失真基于两路式结构,采用四个3d B电桥,两个肖特基二极管和两个变容管构成。通过调节肖特基二极管和变容管的偏置电压、微带线的电长度可以得到不同的增益扩张和相位扩张效应,并使其在不同频率下,增益和相位曲线相近。通过ADS软件对该预失真器进行仿真,仿真结果表明,在29GHz到31GHz的变化范围内,该预失真器可提供6d B的增益扩张和50°的相位扩张,且随频率变化增益与相位变化小于0.5d B和5°。  相似文献   

8.
介绍了一种预失真线性化单片电路,该电路单电源工作,采用预失真技术结合有源反馈的方法,完成了单片预失真线性化电路的研制.预失真线性化单片电路采用75mm GaAs MMIC工艺研制,芯片面积约为4mm2.结果表明,2.1GHz时此预失真单片电路可改善放大器的三阶互调分量9dB.  相似文献   

9.
针对毫米波功率放大器的非线性失真问题,提出一种记忆多项式预失真优化算法,对功放的非线性失真进行补偿。预失真处理前后功放特性曲线表明该预失真算法的线性化效果明显;预失真处理后输出信号的相邻信道功率比原始输入信号高0.89 dB,比预失真前降低了7.8 dB,降低了相邻信道的干扰,符合理想功放线性化放大原则。  相似文献   

10.
在微波功率放大器设计时,通常采用预失真技术来改善宽带信号的线性度.文章在普通的预失真技术基础上,对普通的反向并联肖特基二极管预失真线性化器电路进行了改进,使预失真器经过可调增益放大器后与微波功放直接级联.反向并联肖特基二极管对工作于相同偏置电压下,通过调节二极管的偏置电压, 同时控制IM3 和IM5的相位和幅度.采用这种预失真器的线性化技术能够有效的改善功率放大器的线性度,双音测试表明,在输出功率为41.4dBm时,IMD3 和IMD5 分别改善了19 dB 和14dB.  相似文献   

11.
普通的阶梯阻抗低通滤波器滚降系数一般低于80 dB/GHz,阻带抑制小于20 dB,使其应用受到较大限制;文中首先从理论上分析并设计了具有宽阻带优势的阶梯阻抗滤波器,然后引入扇形短截线结构提高滚降系数,设计了一款通带为0~6 GHz 的高滚降宽阻带的微带低通滤波器。利用ADS 和HFSS分别对滤波器进行了建模、仿真和优化;最后采用RO4003 板材加工并对实物进行了测试。测试结果显示,所设计的滤波器3 dB 截止频率为6.02 GHz,滚降系数为123 dB/ GHz,阻带6.24~20 GHz,阻带抑制大于30 dB。  相似文献   

12.
为解决反射信号损害系统性能的问题,提出了一种具有高带外抑制和高带外吸收的小型化吸收式低通滤波器。该滤波器通过高通通路和低通通路实现了吸收式低通滤波器;通过抑制增益支路实现了高带外抑制。利用ADS和HFSS仿真软件对滤波器结构进行优化设计,并进行了实物的加工和测试。实测结果表明:该滤波器的3 dB截止频率为4 GHz,其带内最小插入损耗0.88 dB,通带内DC到3.5 GHz的回波损耗大于20 dB,阻带回波损耗大于10 dB,10.5 GHz处的阻带抑制大于45dB,从8 GHz到30 GHz的带外抑制大于33 dB,实测结果与仿真结果有较好的吻合。该滤波器尺寸仅为1220μm×650μm×87.71μm,相比传统PCB、LTCC工艺的滤波器,体积大大缩小,符合现代射频与微波系统小型化的发展趋势。  相似文献   

13.
研制了X波段的InGaP/GaAs HBT单级MMIC功率放大器,该电路采用自行开发的GaAs HBT自对准工艺技术制作.电路偏置于AB类,小信号S参数测试在8~8.5GHz范围内,线性增益为8~9dB,输入驻波比小于2,输出驻波比小于3,优化集电极偏置后,线性增益为9~10dB.在8.5GHz进行连续波功率测试,在优化的负载阻抗条件下,P1dB输出功率为29.4dBm,相应增益7.2dB,相应PAE〉40%,电路的饱和输出功率Psat为30dBm.  相似文献   

14.
研制了X波段的InGaP/GaAs HBT 单级MMIC功率放大器,该电路采用自行开发的GaAs HBT自对准工艺技术制作.电路偏置于AB类,小信号S参数测试在8~8.5GHz范围内,线性增益为8~9dB,输入驻波比小于2,输出驻波比小于3,优化集电极偏置后,线性增益为9~10dB.在8.5GHz进行连续波功率测试,在优化的负载阻抗条件下,P1dB输出功率为29.4dBm,相应增益7.2dB,相应PAE>40%,电路的饱和输出功率Psat为30dBm.  相似文献   

15.
A Duroid-based X-band electromagnetic band gap (EBG) Chebyshev 3-pole bandpass filter that is compatible with standard printed circuit board (PCB) fabrication techniques has been designed, fabricated, and tested. The filter consists of three EBG cavities in a multi-layer design. It provides a 5.95% bandwidth response at the resonant frequency fres=9.72 GHz with a corresponding insertion loss of 0.9 dB. Isolation is higher than 30 dB below 9 GHz and above 11 GHz  相似文献   

16.
A photonic microwave (MW) channel selective filter was demonstrated incorporating a 1times2 switch based on two tunable polymeric resonators with different free-spectral ranges (FSRs). Each resonator plays a role as an ON-OFF switch through the thermooptic effect, consisting of two cascaded rings with an electrode formed on one of them. The optical signal carrying the MW signal is routed to either port of the switch and detected to exhibit the filtered output at the frequency determined by the FSR of the corresponding resonator. When the channel centered at 10 GHz was chosen, the extinction ratio was ~30 dB, the bandwidth 1 GHz, and the electrical power consumption 4.1 mW. And for the other channel located at 20 GHz, we have achieved the extinction ratio of ~30 dB, the bandwidth of 2 GHz, and the required power of 8.0 mW. Finally, the crosstalk between the selected and blocked channels was higher than 24 dB.  相似文献   

17.
This paper presents the design and performance characteristics of a 20-40 GHz monolithic double-balanced direct conversion mixer implemented using InGaP/GaAs HBT process. The compact MMIC mixer makes use of a Gilbert-cell multiplier and utilizes a broadband monolithic passive balun that has been developed for MMIC applications. The new balun makes use of multidielectric layer structure to achieve a broadband performance in a simple coplanar configuration. A measured return loss better than 15 dB, with a maximum insertion loss of 4.5 dB including the 3-dB power splitting loss has been achieved over the band from 15 to 45 GHz. Operated as a downconverter mixer, the newly developed direct conversion mixer achieves a measured conversion gain of 16 dB given an RF signal at 30 GHz, LO drive of 5 dBm and a downconverted baseband signal at 10 MHz. The mixer IP3 occurs at an output power of 4 dBm while the IP2 occurs at an output power of 11 dBm.  相似文献   

18.
A novel loss compensation technique for a series-shunt single-pole double-throw (SPDT) switch is presented operating in the 60 GHz. The feed-forward compensation network which is composed of an NMOS, a couple capacitance and a shunt inductance can reduce the impact of the feed forward capacitance to reduce the insertion loss and improve the isolation of the SPDT switch. The measured insertion loss and isolation characteristics of the switch somewhat deviating from the 60 GHz are analyzed revealing that the inaccuracy of the MOS model can greatly degrade the performance of the switch. The switch is implemented in TSMC 90-nm CMOS process and exhibits an isolation of above 27 dB at transmitter mode, and the insertion loss of 1.8-3 dB at 30-65 GHz by layout simulation. The measured insertion loss is 2.45 dB at 52 GHz and keeps<4 dB at 30-64 GHz. The measured isolation is better than 25 dB at 30-64 GHz and the measured return loss is better than 10 dB at 30-65 GHz. A measured input 1 dB gain compression point of the switch is 13 dBm at 52 GHz and 15 dBm at 60 GHz. The simulated switching speed with rise time and fall time are 720 and 520 ps, respectively. The active chip size of the proposed switch is 0.5×0.95 mm2.  相似文献   

19.
This letter presents a K-band quadrature signal generator in a standard 0.13 mu m CMOS process. The quadrature generator operates from 18 to 21 GHz. A maximum output power of -3.7 dBm (per I or Q channel) is achieved, and the down converted signal suppression is >25 dB at the operating bandwidth. A measured sideband rejection ratio >30 dB is achieved from 19 to 21 GHz, with a peak of >40 dB at 19.5-20.5 GHz. The current consumption of the quadrature generator is 49-54 mA from a 2-2.5 V supply with an effective chip area of 0.51times 0.44 mm2 . To the author's knowledge, this is the first demonstration of a K-band quadrature signal generator with high spectral purity and quadrature accuracy.  相似文献   

20.
We report on an InAlAs/InGaAs HBT Gilbert cell double-balanced mixer which upconverts a 3 GHz IF signal to an RF frequency of 5-12 GHz. The mixer cell achieves a conversion loss of between 0.8 dB and 2.6 dB from 5 to 12 GHz. The LO-RF and IF-RF isolations are better than 30 dB at an LO drive of +5 dBm across the RF band. A pre-distortion circuit is used to increase the linear input power range of the LO port to above +5 dBm. Discrete amplifiers designed for the IF and RF frequency ports make up the complete upconverter architecture which achieves a conversion gain of 40 dB for an RF output bandwidth of 10 GHz. The upconverter chip set fabricated with InAlAs/InGaAs HBT's demonstrates the widest gain-bandwidth performance of a Gilbert cell based upconverter compared to previous GaAs and InP HBT or Si-bipolar IC's  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号