首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the atomic layer deposition (ALD) of silicon dioxide thin films on a silicon wafer by alternating exposures to tetrakis(ethylamino)silane [Si(NHC2H5)4] and O3. The growth kinetics of silicon oxide films was examined at substrate temperatures ranging from 325 to 514 degrees C. The deposition was governed by a self-limiting surface reaction, and the growth rate at 478 degrees C was saturated at 0.17 nm/cycle for Si(NHC2H5)4 exposures of 2 x 10(6) L (1 L = 10(-6) Torr x s). The films deposited at 365-404 degrees C exhibited a higher deposition rate of 0.20-0.21 nm/cycle. However, they contained impurities, such as carbon and nitrogen, and showed poor film qualities. The concentration of impurities decreased with increasing substrate temperature. It was found that the films deposited in the high-temperature regime (478-514 degrees C) showed excellent physical and electrical properties equivalent to those of LPCVD films.  相似文献   

2.
The applicability of LiNbO3, langasite and GaPO4 for use as crystal substrates in high temperature surface acoustic wave (SAW) sensors operating at radio frequencies was investigated. Material properties were determined by the use of SAW test devices processed with conventional lithography. On GaPO4, predominantly surface defects limit the accessible frequencies to values of 1 GHz. Langasite SAW devices could be operated up to 3 GHz; however, high acoustic losses of 20 dB/micros were observed. On LiNbO3, the acoustic losses measured up to 3.5 GHz are one order of magnitude less. Hence, SAW sensors capable of wireless interrogation were designed and processed on YZ-cut LiNbO3. The devices could be successfully operated in the industrial-scientific-medical (ISM) band from 2.40 to 2.4835 GHz up to 400 degrees C.  相似文献   

3.
Tin oxide-single wall carbon nanotube (SWCNT) nano composites are synthesized for gas sensor application. The fabrication includes deposition of porous SWCNTs on thermally oxidized SiO2 substrates followed by rheotaxial growth of Sn and thermal oxidation at 300, 400, 500, and 600 degrees C in air. The effects of oxidation temperature on morphology, microstructure, and gas sensing properties are investigated for process optimization. The tin monoxide oxidized at 400 degrees C showed the highest response at the operating temperature of 200 degrees C. Under the optimized test condition, the composite structure showed better response than both structures of SWCNTs and thin film SnO.  相似文献   

4.
A new miniaturized design of the thermosensitive quartz resonator (TSQR) using an NLC cut (yxl/ -31 degrees 30') with a fundamental frequency of 29.3 MHz was created in the Acoustoelectronics Laboratory of ISSPBAS for use in a wide temperature range (4.2 K to 450 K) as highly sensitive quartz temperature sensors (QTS). This paper presents the results of the investigations of the short- and long-term frequency stability of QTS. The short-term frequency stability of QTS was measured for averaging times up to 150 s at three constant temperatures: liquid helium (4.2 K), liquid nitrogen (77 K), and melting ice (0 degrees C). The short-term frequency stability is 6.8 * 10(-9) at 0 degrees C for t = 15 s, which permits a temperature sensitivity of 2 * 10(-4) K. The long-term stability (aging) was investigated at room temperature and at 80 degrees C for 500 days. The aging characteristics at 25 degrees C and 80 degrees C are compared. It was observed that the frequency change does not exceed 5 * 10(-7) after the 25th day of accelerated aging at 80 degrees C. This guarantees a reliable operation of the sensor, without additional calibration, for several years.  相似文献   

5.
Atomic layer deposition of ruthenium on SrTiO3 layers was investigated using (C2H5C5H4). (NC4H4)Ru and air as precursors. For comparison, the growth was studied also on ZrO2 films and SiO2/Si surfaces. Deposition temperature was 325 degrees C. Using rather short but intense air pulses, smooth and uniform Ru films were deposited on SrTiO3. The films were crystallized at early stages of the growth. The nucleation density and rate on SrTiO3 were notably lower compared to that on ZrO2 and SiO2, but the physical qualities including the film conductivity were considerably enhanced after reaching Ru film thickness around 10 nm.  相似文献   

6.
A dual-mode thickness-shear quartz pressure sensor   总被引:2,自引:0,他引:2  
The development of a dual-mode thickness-shear quartz pressure sensor to meet the demanding performance requirements of oil-field applications is discussed. The objective was to develop a sensor with an operating pressure range of 0-103.42 MPa (0.15 000 lb/in(2)), a temperature range of -10 to +175 degrees C, a pressure calibration accuracy of 6894.8 Pa (1 lb/in(2)), and resolution of 68.95 Pa (0.01 lb/in(2)) with 1-s counter gate time. Doubly rotated cuts with piezoelectric coupling to both the C-modes of vibration were investigated. A theoretical study and general design considerations in the development of such sensors are described. Experimental results were obtained for two sensor designs: one uses a cylindrical design with the SBTC-cut, and the other, called SPA, is a special resonator design vibrating around 5 MHz without any activity dips. Pressure sensitivity of approximately 145 Hz/MPa (1 Hz/lb/in(2)) at 175 degrees C is obtained. Laboratory evaluation of the static and dynamic performances is discussed for the prototypes based on the SPA design.  相似文献   

7.
In the last decade, much attention has been given to piezoelectric crystals with large electromechanical coupling coefficient. The quartz homeotypes berlinite and gallium orthophosphate (GaPO/sub 4/), along with the calcium gallo-germanates such as langasite are representative of these crystals. The coupling coefficient k/sub 26/ associated with thickness-shear mode resonators is two times greater than that of quartz, increasing the spacing between the series and parallel resonance frequencies of resonators suitable for the frequency range from 1 to 100 MHz. This is important for some types of crystal oscillators and monolithic filters. The large electromechanical coupling coefficient also increases the difference between the temperature dependencies of the fundamental resonance frequency and its harmonics. In this paper, measured resonance frequency-temperature characteristics of the fundamental and third harmonics of selected rotated Y-cut GaPO/sub 4/ resonators vibrating in the thickness-shear mode are presented. Further attention is given to the measurement of some nonlinear properties of rotated Y-cut GaPO/sub 4/ resonators. Knowledge of such nonlinear interactions is important for the analysis of intermodulation phenomena in resonators, and for the application of GaPO/sub 4/ resonators in crystal oscillators, filters and other electronic devices.  相似文献   

8.
Flexural modes are the basic vibrating mode of tuning forks used in quartz wrist watches; they also can be used as the basis for sensors. Very little work, if any, has been done for vibrating beam resonators in GaPO4. In this paper, the possibility of temperature-compensated cuts in GaPO4 is investigated for length-extensional and flexural vibrating modes. A theoretical investigation of rectangular cross-section GaPO4 vibrating beam resonators is accomplished by analytical methods. Modeling temperature effect is achieved by the approximate but classical method in which the effective elastic constants, beam dimensions, and crystal mass density are varied as a function of temperature. Temperature-compensated cuts are given in GaPO4 for length-extensional and flexural modes. Some temperature-compensated cuts of GaPO4 exhibit inversion points at high temperatures.  相似文献   

9.
Shimamoto A  Tanaka K 《Applied optics》1995,34(25):5854-5860
An optical fiber bundle displacement sensor with subnanometer order resolution and low thermal drift is proposed. The setup is based on a carrier amplifier system and involves techniques to eliminate fluctuation in the light power of the source. The achieved noise level of the sensor was 0.03nm/√Hz. The stability was estimated by comparing the outputs of two different sensors from the same target for 4 ks (67 min). The relative displacements between the fiber bundle ends of the two sensors and the target surface varied in the area of 400 nm depending on the ambient temperature variation at 2 °C. However, the difference in output between the two sensor systems is within 2 nm for more than 1 hour of measurement. It is expected that it would be reduced to within the area of 0.1 nm if the ambient temperature were controlled to within ±0.1 °C. It is concluded that the stability of the sensors is sufficiently good to be used with nanotechnological instruments.  相似文献   

10.
The optical properties of electrochemically deposited ZnO thin films on colloidal crystal film of SiO2 microspheres structures were studied. Colloidal crystal film of SiO2 microspheres were self-assembled by evaporation using SiO2 in solution at a constant 0.1 wt%. ZnO in thin films was then electrochemically deposited on to colloidal crystal film of SiO2 microspheres. During electrochemical deposition, the content of Zn(NO3)2 x 6H2O in solution was 5 wt%, and the process's conditions were varied between of 2-4 V and 30-120 s at room temperature, with subsequent heat-treatment between 200 and 400 degrees C. A smooth surface and uniform thickness of 1.8 microm were obtained at 3 V for 90 s. The highest PL peak intensity was obtained in the ZnO thin film heat-treated at 400 degrees C. The double layered ZnO/SiO2 colloidal crystals showed clearly better emission properties than the SiO2/ZnO and ZnO structures.  相似文献   

11.
WSi2 nanocrystal nonvolatile memory devices were fabricated with a silicon oxide-nitride-oxide (SiO2: 2 nm/Si3N4:2 nm/SiO2:3 nm) tunnel layer. WSi2 nanocrystals of 2.5 nm diameters and a density of 3.6 x 10(12) cm(-2) were formed using radio frequency magnetron sputtering and annealing processes. The WSi2 nanocrystal nonvolatile memory device exhibited strong thermal stability during writing/erasing operations at temperatures up to 125 degrees C. When the writing/erasing voltages were applied at +10 V/-10 V for 500 ms, the memory window of the initial approximately 2.6 V decreased by approximately 1.1 V at 25 degrees C and 0.4 V at 125 degrees C after 10(4) sec, respectively. These results show that WSi2 nanocrystals with barrier-engineered tunnel layers are possible for application in nonvolatile memory devices.  相似文献   

12.
This paper describes temperature compensated bulk acoustic-wave resonators (BAR) with temperature coefficient of frequency (TCF) less than 1 ppm/degrees C at above 3 GHz. The temperature compensation is produced from the unique physical property of silicon dioxide's positive TCF, unlike most other materials that have negative TCF. Two types of resonators have been explored: film bulk acoustic resonator (FBAR) composed of Al/ZnO/Al/SiO2 on a surface micromachined cantilever that is released by XeF2 vapor etching and high-overtone acoustic resonator (HBAR) composed of an Al/ZnO/Al resonator on a bulk micromachined SiO2/Si/SiO2 supporting substrate.  相似文献   

13.
Nanoscale ISFET (ion sensitive field-effect transistor) pH sensors are presented that produce the well-known sub-nernstian pH-response for silicon dioxide (SiO(2)) surfaces and near ideal nernstian sensitivity for alumina (Al(2)O(3)) surfaces. Titration experiments of SiO(2) surfaces resulted in a varying pH sensitivity ~20 mV/pH for pH near 2 and >45 mV/pH for pH > 5. Measured pH responses from titrations of thin (15 nm) atomic layer deposited (ALD) alumina (Al(2)O(3)) surfaces on the nanoISFETs resulted in near ideal nernstian pH sensitivity of 57.8 ± 1.2 mV/pH (pH range: 2-10; T = 22 °C) and temperature sensitivity of 0.19 mV/pH °C (22 °C ≤ T ≤ 40 °C). A comprehensive analytical model of the nanoISFET sensor, which is based on the combined Gouy-Chapman-Stern and Site-Binding (GCS-SB) model, accompanies the experimental results and an extracted ΔpK ≈ 1.5 from the measured responses further supports the near ideal nernstian pH sensitivity.  相似文献   

14.
The influence of the annealing atmosphere on the temperature induced phase separation of Ge oxide in GeO(x)/SiO(2) multilayers (x≈1), leading to size controlled growth of Ge nanocrystals, is explored by means of x-ray absorption spectroscopy at the Ge K-edge. Ge sub-oxides contained in the as-deposited multilayers diminish with increasing annealing temperature, showing complete phase separation at approximately 450?°C using inert N(2) ambient. The use of reducing H(2) in the annealing atmosphere influences the phase separation even at an early stage of the disproportionation. In particular, the temperature regime where the phase separation occurs is lowered by at least 50?°C. At temperatures above 400?°C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO(2) by H(2).  相似文献   

15.
Recent progress in growing and characterizing quartz-like materials of the trigonal system class 32 has been reported by several groups. The promising perspective for bulk acoustic wave frequency control applications indicates the potentiality of employing these materials for SAW applications as well. This paper reports results of investigations focused on SAW orientations of langasite (LGS), gallium phosphate (GaPO(4)), and langanite (LGN), both singly and doubly rotated cuts. Among the characteristics explored, major attention is paid to the temperature coefficient of delay (TCD), the electromechanical coupling coefficient (K(2)), and the power flow angle (PFA). Contour graphs are plotted based on our calculated results and show the regions in space in which low TCD and high K(2 ) can be obtained; they also exhibit the associated PFA and phase velocity characteristics. The influence of different sets of material constants is addressed. The spatial investigation performed shows that there are promising orientation regions in these materials at which zero or reduced TCD (<10 ppm/ degrees C) and PFA are obtained. Additional attractive characteristics for SAW applications have been observed: values of K(2) a few times higher than the K(2) of quartz ST-X, thus finding applications in larger bandwidth devices; variation of the TCD with respect to temperature, which is comparable to the variation found for quartz ST-X and less than that for zero TCD Li (2)B(4)O(7) cuts like 45 degrees X-Z and (0 degrees 78 degrees 90 degrees ); and phase velocity values circa 13 to 26% smaller than the phase velocity of quartz ST-X thus allowing a reduction in size for intermediate frequency device applications.  相似文献   

16.
Calizo I  Balandin AA  Bao W  Miao F  Lau CN 《Nano letters》2007,7(9):2645-2649
We investigated the temperature dependence of the frequency of G peak in the Raman spectra of graphene on Si/SiO2 substrates. The micro-Raman spectroscopy was carried out under the 488 nm laser excitation over the temperature range from -190 to +100 degrees C. The extracted value of the temperature coefficient of G mode of graphene is chi = -0.016 cm-1/ degrees C for the single layer and chi = -0.015 cm-1/ degrees C for the bilayer. The obtained results shed light on the anharmonic properties of graphene.  相似文献   

17.
The fatigue crack growth resistance of a [0/90°]2s cross-ply SCS6 fibre-reinforced Ti–6Al–4V alloy metal-matrix composite has been assessed under displacement range control (i.e. under load shedding conditions with crack extension) to investigate potential fibre degradation and the process of crack extension at room temperature, and at 450°C, in air and in vacuum. Attention is focused on initial conditions that will promote crack arrest at room temperature. Under the test conditions employed here, regions of crack growth can occur where the applied nominal stress intensity factor range (ΔK) is relatively constant. This 'constant'ΔK range is the result of a fortuitous balance between the particular test-piece geometry, loading conditions utilized, matrix crack growth and the rate of fibre fracture. It allows the influence of environment, cyclic frequency and temperature on fatigue crack growth resistance to be analysed more easily than for tests carried out under load control.
The crack growth rate remained almost constant but with some steep local retardations in growth rate in the constant ΔK region at a temperature of 450°C, while crack arrest occurred at room temperature for the same initial ΔK. The average crack propagation rate in this 'constant ΔK region' at a temperature of 450°C in air was much greater than that at a temperature of 450°C in vacuum. This indicates that environment plays an important role in the process of fibre degradation. The effect of cyclic frequency is saturated at a frequency of less than 1  Hz. The process of crack growth at various frequencies is also discussed.  相似文献   

18.
The thermal stability of thin Ru single layer and Ru/TaN bilayers grown on bare Si by plasma enhanced atomic layer deposition (PEALD) have been studied with Cu/Ru, Cu/Ru/TaN structures as a function of annealing temperature. To investigate the characteristics as a copper diffusion barrier, a 50 nm thick Cu film was sputtered on Ru and Ru/TaN layers and each samples subjected to thermal annealing under N2 ambient with varied temperature 300, 400, and 500 degrees C, respectively. It was found that the single 5 nm thick ALD Ru layer acted as an effective Cu diffusion barrier up to 400 degrees C. On the other hand ALD Ru (5 nm)/TaN (3.2 nm) showed the improved diffusion barrier characteristics even though the annealing temperature increased up to 500 degrees C. Based on the experimental results, the failure mechanism of diffusion barrier would be related to the crystallization of amorphous Ru thin film as temperature raised which implies the crystallized Ru grain boundary served as the diffusion path of Cu atoms. The combination of ALD Ru incorporated with TaN layer would be a promising barrier structure in Cu metallization.  相似文献   

19.
This paper explores the development of high-temperature pressure sensors based on polycrystalline and single-crystalline 3C-SiC piezoresistors and fabricated by bulk micromachining the underlying 100-mm diameter (100) silicon substrate. In one embodiment, phosphorus-doped APCVD polycrystalline 3C-SiC (poly-SiC) was used for the piezoresistors and sensor diaphragm, with LPCVD silicon nitride employed to electrically isolate the piezoresistor from the diaphragm. These piezoresistors fabricated from poly-SiC films deposited at different temperatures and doping levels were characterized, showing -2.1 as the best gauge factor and exhibited a sensitivities up to 20.9-mV/V*psi at room temperature. In a second embodiment, epitaxially-grown unintentionally nitrogen-doped single-crystalline 3C-SiC piezoresistors were fabricated on silicon diaphragms, with thermally grown silicon dioxide employed for the piezoresistor electrical isolation from the diaphragm. The associated 3C-SiC/SiO/sub 2//Si substrate was fabricated by bonding a (100) silicon wafer carrying the 3C-SiC onto a silicon wafer with thermal oxide covering its surface. The 3C-SiC handle wafer was then etched away in KOH. The diaphragm was fabricated by time etching the silicon substrate. The sensors were tested at temperatures up to 400/spl deg/C and exhibited a sensitivity of 177.6-mV/V*psi at room temperature and 63.1-mV/V*psi at 400/spl deg/C. The estimated longitudinal gauge factor of 3C-SiC piezoresistors along the [100] direction was estimated at about -18 at room temperature and -7 at 400/spl deg/C.  相似文献   

20.
Kim ID  Rothschild A  Lee BH  Kim DY  Jo SM  Tuller HL 《Nano letters》2006,6(9):2009-2013
Nanostructured semiconducting metal oxides and particularly single nanowire devices offer exceptional gas sensitivity but at the expense of statistical variations and excessive noise levels. In this study TiO2/poly(vinyl acetate) composite nanofiber mats were directly electrospun onto interdigitated Pt electrode arrays, hot pressed at 120 degrees C, and calcined at 450 degrees C. This resulted in a novel multiple nanowire network composed of sheaths of 200-500 nm diameter cores filled with readily gas accessible approximately 10 nm thick single-crystal anatase fibrils. TiO2 nanofiber sensors tested for NO2, in dry air, exhibited exceptional sensitivity showing with, for example, a 833% increase in sensor resistance when exposed to 500 ppb NO2 at 300 degrees C, consistent with a detection limit estimated to be well below 1 ppb. Unusual response patterns were observed at high NO2 concentrations (> 12.5 ppm), consistent with n to p inversion of the surface-trap limited conduction facilitated by the high surface-to-volume ratio of this material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号