首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on an investigation of the trapezoidal design and fabrication defects in phase masks used to produce Bragg reflection gratings in optical fibers. We used a direct visualization technique to examine the nonuniformity of the interference patterns generated by several phase masks. Fringe patterns from the phase masks are compared with the analogous patterns resulting from two-beam interference. Atomic force microscope imaging of the actual phase gratings that give rise to anomalous fringe patterns is used to determine input parameters for a general theoretical model. Phase masks with pitches of 0.566 and 1.059 mum are modeled and investigated.  相似文献   

2.
Tan X  Matoba O  Shimura T  Kuroda K 《Applied optics》2001,40(26):4721-4727
We show that a double-random encryption technique can improve the storage capacity of an angular-multiplexed holographic memory system. In the holographic memory system, input binary images are encrypted into white-noise-like images by use of two random phase masks located at the input and the Fourier planes. These encrypted images are stored as holograms in a photorefractive medium by use of angular multiplexing. All the images are encrypted by different sets of random phase masks. Even when the angle separation between adjacent images is small enough to cause cross talk between adjacent images, original binary data can be recovered with the correct phase mask; the other reconstructed images remain white-noise-like images because incorrect masks are used. Therefore the capacity of the proposed system can be larger than that of a conventional holographic memory system without the random phase encryption technique. Numerical evaluation and experimental results are presented to confirm that the capacity of the system with random phase masks is larger than that of the conventional memory system.  相似文献   

3.
Sidick E 《Applied optics》2007,46(30):7485-7493
We investigate the effects of the parasitic phase of imperfect band-limited occulting masks on the broadband contrast performance of a high-contrast imaging system through modeling and simulations. We also examine the effects of the phase and the optical-density dispersions of occulting masks whose parasitic phase has been compensated at the center wavelength but is nonzero at other wavelengths. Two types of occulting masks are considered: gray-scale masks such as those made on a high-energy beam-sensitive glass, and recently proposed spatially profiled metal masks, both having 1D Sinc2(linear-Sinc2) amplitude transmission coefficient (Sinc4 intensity transmittance) profiles. We determine the conditions for obtaining 1x10(-9) and 1x10(-10) contrast values with a light centered at a 785 nm wavelength and having a 10% bandwidth in a coronagraphic telescope having ideal optical surfaces but imperfect band-limited image-plane occulting masks.  相似文献   

4.
5.
Chang HT  Lu WC  Kuo CJ 《Applied optics》2002,41(23):4825-4834
The technique of the multiple phase encoding for optical security and verification systems is presented in this paper. This technique is based on a 4-f optical correlator that is a common architecture for optical image encryption and verification systems. However, two or more phase masks are iteratively retrieved by use of the proposed multiple phases retrieval algorithm (MPRA) to obtain the target image. The convergent speed of the iteration process in the MPRA is significantly increased and the recovered image is much more similar to the target image than those in previous approaches. In addition, the quantization effects due to the finite resolution of the phase levels in practical implementation are discussed. The relationships between the number of phase masks and the quantized phase levels are also investigated. According to the simulation results, two and three phase masks are enough to design an efficient security verification system with 64 and 32 phase levels, respectively.  相似文献   

6.
Meng XF  Cai LZ  Yang XL  Shen XX  Dong GY 《Applied optics》2006,45(14):3289-3297
A novel information security system based on multiple-phase retrieval by an iterative Fresnel-transform algorithm and pixel random permutation (PRP) technique is proposed. In this method a series of phase masks cascaded in free space are employed and the phase distributions of all the masks are adjusted simultaneously in each iteration. It can achieve faster convergence and better quality of the recovered image compared with double-phase encoding and a similar approach in the spatial-frequency domain with the same number of phase masks and can provide a higher degree of freedom in key space with more geometric parameters as supplementary keys. Furthermore, the security level of this method is greatly improved by the introduction of the PRP technique. The feasibility of this method and its robustness against occlusion and additional noise attacks are verified by computer simulations. The performance of this technique for different numbers of phase masks and quantized phase levels is investigated systematically with the correlation coefficient and mean square error as convergence criterions.  相似文献   

7.
Binary image encryption based on interference of two phase-only masks   总被引:1,自引:0,他引:1  
W Jia  FJ Wen  YT Chow  C Zhou 《Applied optics》2012,51(21):5253-5258
Optical image encryption based on interference has attracted a lot of attention recently. The technique employs two pure phase masks derived from the complex field of the image in the Fresnel diffraction domain. The image decryption procedure can be carried out by inverse Fresnel transformation of the summation of two pure phase masks. However, the silhouette of the original image, which is recovered by either of the two phase-only masks, impedes the application of this technique. In this paper, a very simple method for binary image encryption based on interference of two phase-only masks is proposed without any silhouette problem. The binary image in combination with a random phase mask is separated into two phase-only masks directly, and the decryption by summation of the two masks can be performed digitally or optically. In this paper, the encryption and decryption processes are analyzed, after which both the optical simulation and the experimental results based on single-beam holography are given to demonstrate the feasibility of the encryption method. As information nowadays is mainly digitized into binary codes, the proposed encryption method may find applications in the information processing field.  相似文献   

8.
A technique for digital watermarking of smooth object wavefronts using digital random phase modulation and multiple-plane iterative phase retrieval is demonstrated experimentally. A complex-valued watermark is first encrypted using two random phase masks of known distributions before being superposed onto a set of host wavefront intensity patterns. Encryption scaling factor and depth of randomization of the masks are optimized such that the amplitude and phase watermarks are decrypted successfully and are not distorting the host wavefront. Given that the watermarked intensity patterns and the numerous decryption keys are available (i.e. distances between recording planes, light source wavelength, pixel size, random phase masks and their distances to the planes are all known), increasing the number of watermarked patterns used results in enhanced quality of decrypted watermarks. The main advantage of wavefront watermarking via the phase retrieval approach compared to the holographic approach is the avoidance of reference wave-induced aberration. Watermarking of wavefronts from lenses and unstained human cheek cells demonstrate the effectiveness of the technique.  相似文献   

9.
We propose and discuss discrete recurrent algorithms for the retrieval of coherent light fields phase from measurement data of the intensity distribution of their spatial spectra. It is shown that the amplitude-only and the phase-only light fields are retrieved uniquely from the modules of their Fourier spectrum while, introducing in that fields the phase and amplitude masks respectively, satisfying certain conditions. Arbitrary amplitude-phase light fields are retrieved from two modules measurements of their Fourier spectrum, namely, before and after introducing the amplitude-phase masks.  相似文献   

10.
Barwick DS 《Applied optics》2008,47(26):4684-4691
A significant hurdle for the widespread adoption of iris recognition in security applications is that the typically small imaging volume for eye placement results in systems that are not user friendly. Separable cubic phase plates at the lens pupil have been shown to ameliorate this disadvantage by increasing the depth of field. However, these phase masks have limitations on how efficiently they can capture the information-bearing spatial frequencies in iris images. The performance gains in information acquisition that can be achieved by more general, nonseparable phase masks is demonstrated. A detailed design method is presented, and simulations using representative designs allow for performance comparisons.  相似文献   

11.
Teschke M  Sinzinger S 《Applied optics》2008,47(26):4767-4776
We report novel approaches to the design of halftone masks for analog lithography. The approaches are derived from interferometric phase contrast. In a first step we show that the interferometric phase-contrast method with detour holograms can be reduced into a single binary mask. In a second step we introduce the interferometric phase-contrast method by interference of the object wavefront with the conjugate object wavefront. This method also allows for a design of a halftone mask. To use kinoform holograms as halftone phase masks, we show in a third step the combination of the zeroth-order phase-contrast technique with the interferometric phase-contrast method.  相似文献   

12.
A new fabrication method of apodized diffractive optical elements is proposed. It relies on using high energy beam sensitive glass as a halftone mask for variable diffraction efficiency phase masks generation in a resist layer. The presented technology is especially effective in mass production. Although fabrication of an amplitude mask is required, it is then repeatedly used in a single shot projection photolithography, which is much simpler and less laborious than the direct variable-dose pattern writing. Three prototypes of apodized phase masks were manufactured and characterized. The main advantages as well as limitations of the proposed technology are discussed.  相似文献   

13.
We consider optimization of hybrid imaging systems including a pupil mask for enhancing the depth of field and a digital deconvolution step. In a previous paper [Opt. Lett. 34, 2970 (2009)] we proposed an optimization criterion based on the signal-to-noise ratio of the restored image. We use this criterion in order to optimize different families of phase or amplitude masks and to compare them, on an objective basis, for different desired defocus ranges. We show that increasing the number of parameters of the masks allows one to obtain better performance.  相似文献   

14.
Nam YS  Jeon S  Shir DJ  Hamza A  Rogers JA 《Applied optics》2007,46(25):6350-6354
Three-dimensional (3D) intensity distributions generated by light passing through conformal phase masks can be modulated by the absorption property of photosensitive materials. The intensity distributions have extremely long depth of focus, which is proportional to the size of the phase masks, and this enables one to pattern thick (approximately 100 microm), nanoporous structures with precise control of grade density. Various density-graded 3D structures that result from computational modeling are demonstrated. Results of x-ray radiograph and the controlled absorption coefficient prove the dominant mechanism of the generated graded density is absorption of the photosensitive materials. The graded-density structures can be applied to a chemical reservoir for controlled release of chemicals and laser target reservoirs useful to shape shockless wave compression.  相似文献   

15.
Rajput SK  Nishchal NK 《Applied optics》2012,51(10):1446-1452
We propose an image encryption technique based on the interference principle and phase-truncation approach in the fractional Fourier domain. The proposed scheme offers multiple levels of security with asymmetric keys and is free from the silhouette problem. Multiple input images bonded with random phase masks are independently fractional Fourier transformed. Amplitude truncation of obtained spectrum helps generate individual and universal keys while phase truncation generates two phase-only masks analytically. For decryption, these two phase-only masks optically interfere, and this results in the phase-truncated function in the output. After using the correct random phase mask, universal key, individual key, and fractional orders, the original image is retrieved successfully. Computer simulation results with four gray-scale images validate the proposed method. To measure the effectiveness of the proposed method, we calculated the mean square error between the original and the decrypted images. In this scheme, the encryption process and decryption keys formation are complicated and should be realized digitally. For decryption, an optoelectronic scheme has been suggested.  相似文献   

16.
SK Rajput  NK Nishchal 《Applied optics》2012,51(22):5377-5386
A single channel asymmetric color image encryption scheme is proposed that uses an amplitude- and phase- truncation approach with interference of polarized wavefronts. Instead of commonly used random phase masks, wavelength-dependent structured phase masks (SPM) are used in the fractional Fourier transform domain for image encoding. The primary color components bonded with different SPMs are combined into one grayscale image using convolution. We then apply the amplitude and phase truncation to the fractional spectrum, which helps generate unique decryption keys. The encrypted image bonded with a different SPM is then encoded into a polarization selective diffractive optical element. The proposed scheme alleviates the alignment problem of interference and does not need iterative encoding and offers multiple levels of security. The effect of a special attack to the proposed asymmetric cryptosystem has been studied. To measure the effectiveness of the proposed method, we calculated the mean square error between the original and the decrypted images. The computer simulation results support the proposed idea.  相似文献   

17.
Experimental results of fiber Bragg gratings fabricated with halftone amplitude transmission masks and 10-cm-long phase masks are presented for the first time to our knowledge. The performance of the devices is evaluated in terms of their spectral characteristics and deviation from linear group delay. Good out-of-band sidelobe suppression of -27 dB and group-delay ripple of ?9.5 ps is achieved for fully apodized grating devices.  相似文献   

18.
Li Y  Kreske K  Rosen J 《Applied optics》2000,39(29):5295-5301
An improved optical security system based on two phase-only computer-generated masks is proposed. The two transparencies are placed together in a 4f correlator so that a known output image is received. In addition to simple verification, our security system is capable of identifying the type of input mask according to the corresponding output image it generates. The two phase masks are designed with an iterative optimization algorithm with constraints in the input and the output domains. A simulation is presented with the resultant images formed by the two phase-only elements. Various mask combinations are compared to show that a combination is unique and cannot be duplicated. This uniqueness is an advantage in security systems.  相似文献   

19.
In this study, we propose a new optical colour image encryption technique using spiral phase transform and chaotic pixel scrambling. For encryption, three channels of the colour image i.e. red, green and blue are first separated and modulated with three different structured phase masks. Spiral phase transform (SPT) with a particular order of modified spiral phase function (MSPF) is utilized for further processing. Random modulus decomposition is applied to the complex output after SPT to generate the private key for decryption. The pixels of the image are scrambled by using the chaotic Tinkerbell map for enhanced security. The order of MSPF, three structured phase masks, parameters of Tinkerbell mapping, and the private key generated during the encryption process serve as the security keys. The robustness of the proposed method is checked against various potential attacks. A series of numerical simulation results are presented to validate the proposed colour image encryption method.  相似文献   

20.
Asymmetric phase masks for extended depth of field   总被引:1,自引:0,他引:1  
We present a family of asymmetric phase masks that extends the depth of field of an optical system. To verify our proposal, we compute several modulation transfer functions with focus errors, and we report numerical simulations of the images that can be achieved by use of our proposed procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号