首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of aluminum and yttrium nitrate additives on the densification of monolithic Si3N4 and a Si3N4/SiC composite by pressureless sintering was compared with that of oxide additives. The surfaces of Si3N4 particles milled with aluminum and yttrium nitrates, which were added as methanol solutions, were coated with a different layer containing Al and Y from that of Si3N4 particles milled with oxide additives. Monolithic Si3N4 could be sintered to 94% of theoretical density (TD) at 1500°C with nitrate additives. The sintering temperature was about 100°C lower than the case with oxide additives. After pressureless sintering at 1750°C for 2 h in N2, the bulk density of a Si3N4/20 wt% SiC composite reached 95% TD with nitrate additives.  相似文献   

2.
The compaction and heat-treatment behavior of nanosize γ-Al2O3 powder (average diameter = 20 nm) was studied. A diamond anvil high-pressure cell was used to compact the powder at pressures up to 3 GPa, both in air at room temperature and under liquid nitrogen, followed by pressureless heat treatment at 800°C. For all conditions studied, the fabricated compacts were optically transparent. X-ray diffraction confirmed retention of the γ-phase. The compacts were also characterized before and after heat treatment by microhardness measurements and by transmission electron microscopy. For both ambient and cryogenic compaction, sample hardness increased with pressure, and heat treatment resulted in about a 50% increase in hardness independent of the initial green-state value. Samples compacted in LN2 were significantly harder (up to 9.6 GPa) than those compacted in air. TEM examination revealed a random-dense-packed particle structure and interconnected porosity; interstitial void dimensions, however, were always less than the average particle diameter (20 nm). Observed effects on the increase in hardness could not be explained by microstructural changes normally attributed to increased compaction pressure or heat treatment, most notably densification. Alternative explanations are proposed.  相似文献   

3.
An alternative method to incorporate nanometer-sized silicon carbide (SiC) particles into silicon nitride (Si3N4) powder was proposed and investigated experimentally. Novolac-type phenolic resin was dissolved in ethanol and mixed with Si3N4 powder. After drying and curing, the resin was converted to reactive carbon via pyrolysis. Si3N4 powder was partially reduced carbothermally using the pyrolyzed carbon, and nanometer-sized SiC particles were produced in situ at 1530°-1610°C in atmospheric nitrogen. At temperatures <1550°C, the reduction rate was low and the SiC particles were very small; no SiC whiskers or barlike SiC was observed. At 1600°C, the reduction rate was high and the reaction was close to completion after only 10 min, with the appearance of SiC whiskers as well as curved, barlike, and equiaxial SiC, all of which were dozens of nanometers in diameter; this size is greater than that at observed temperatures <1550°C. A longer soaking time at 1600°C led to agglomerates. SiC particles were close to the surface of the Si3N4 particles. The SiC content could be adjusted by changing the carbon content before reduction and the reduction temperature. A reaction mechanism that involved the decomposition of Si3N4 has been proposed.  相似文献   

4.
Porous Si3N4 ceramics were synthesized by pressureless sintering of green compacts prepared using slip casting of slurries containing Si3N4, 5 wt% Y2O3+2 wt% Al2O3, and 0–60% organic whiskers composed of phenol–formaldehyde resin with solids loading up to 60 wt%. Rheological properties of slurries were optimized to achieve a high degree of dispersion with a high solid-volume fraction. Samples were heated at 800°C in air and sintered at 1850°C in a N2 atmosphere. Porosities ranging from 0% to 45% were obtained by the whisker contents (corresponding to 0–60 vol% whisker). Samples exhibited a uniform pore distribution. Their rod-shaped pore morphology originated from burnout of whiskers, and an extremely dense Si3N4 matrix.  相似文献   

5.
The synthesis and structure of a monodispersed spherical Si3N4/SiC nanocomposite powder have been studied. The Si3N4/SiC nanocomposite powder was synthesized by heating under argon a spherical Si3N4/C powder. The spherical Si3N4/C powder was prepared by heating a spherical organosilica powder in a nitrogen atmosphere and was composed of a mixture of nanosized Si3N4 and free carbon particles. During the heat treatment at 1450°C, the Si3N4/C powder became a Si3N4/SiC composite powder and finally a SiC powder after 8 h, while retaining its spherical shape. The composition of the Si3N4/SiC composite powder changed with the duration of the heat treatment. The results of TEM, SEM, and selected area electron diffraction showed that the Si3N4/SiC composite powder was composed of homogeneously distributed nanosized Si3N4 and SiC particles.  相似文献   

6.
New Strategies for Preparing NanoSized Silicon Nitride Ceramics   总被引:2,自引:0,他引:2  
We report the preparation of nanosized silicon nitride (Si3N4) ceramics via high-energy mechanical milling and subsequent spark plasma sintering. A starting powder mixture consisting of ultrafine β-Si3N4 and sintering additives of 5-mol% Y2O3 and 2-mol% Al2O3 was prepared by high-energy mechanical milling. After milling, the powder mixture was mostly transformed into a non-equilibrium amorphous phase containing a large quantity of well-dispersed nanocrystalline β-Si3N4 particles. This powder precursor was then consolidated by spark plasma sintering at a temperature as low as 1600°C for 5 min at a heating rate of 300°C/min. The fully densified sample consisted of homogeneous nano-Si3N4 grains with an average diameter of about 70 nm, which led to noticeable high-temperature ductility and elevated hardness.  相似文献   

7.
The influence of ball-milling methods on microstructure and mechanical properties of silicon nitride (Si3N4) ceramics produced by pressureless sintering for a sintering additive from MgO–Al2O3–SiO2 system was investigated. For planetary high-energy ball milling, the mechanical properties of Si3N4 ceramics were evidently improved and a homogeneous microstructure developed. In contrast, some exaggerated elongated grains were developed due to the local enrichment of sintering additives in the specimen prepared by general ball milling. For Si3N4 ceramics produced by planetary ball milling, flexure strength of 1.06 GPa, Vickers hardness of 14.2 GPa, and fracture toughness of 6.6 MPa·m0.5 were achieved. The differences in the mechanical properties of Si3N4 ceramics produced by different processing seem to arise mainly from the changes in microstructural homogenization and sinterability. The planetary high-energy ball-milling process provides a good route to mix starting powders for developing ceramics with uniform microstructure and promising mechanical properties.  相似文献   

8.
Porous SiC ceramics were synthesized by sintering pressed and pressed/CIPed powder compacts of α-Si3N4, carbon (Si3N4:C = 1:3 mol as ratio), and sintering aids, at 1600°C for few hours to achieve a reaction, and subsequently sintering at a temperature range of 1750°–1900°C, in an argon atmosphere. High porosities from 45%–65% were achieved by low shrinkage with large weight loss. Formation of pure 2H-SiC phase via a reaction between Si3N4 and carbon can be demonstrated by X-ray diffractometry. The resultant porous SiC samples were characterized by SiC grain microstructures, pore-size distribution, and flexural strength. This method has the advantage of fabricating high-porous SiC ceramics with fine microstructure and good properties at a relatively low temperature.  相似文献   

9.
Oxidized amorphous Si3N4 and SiO2 powders were pressed alone or as a mixture under high pressure (1.0–5.0 GPa) at high temperatures (800–1700°C). Formation of crystalline silicon oxynitride (Si2ON2) was observed from amorphous silicon nitride (Si3N4) powders containing 5.8 wt% oxygen at 1.0 GPa and 1400°C. The Si2ON2 coexisted with β-Si3N4 with a weight fraction of 40 wt%, suggesting that all oxygen in the powders participated in the reaction to form Si2ON2. Pressing a mixture of amorphous Si3N4 of lower oxygen (1.5 wt%) and SiO2 under 1.0–5.0 GPa between 1000° and 1350°C did not give Si2ON2 phase, but yielded a mixture of α,β-Si3N4, quartz, and coesite (a high-pressure form of SiO2). The formation of Si2ON2 from oxidized amorphous Si3N4 seemed to be assisted by formation of a Si–O–N melt in the system that was enhanced under the high pressure.  相似文献   

10.
The optimization of concentrated Si3N4 powder aqueous slurry properties to achieve high packing density slipcast compacts and subsequent high sintered densities was investigated. The influence of pH, sintering aid powder (6% Y2O3, 4% Al2O3), NH4PA dispersant, and Si3N4 oxidative thermal treatment was determined for 32 vol% Si3N4 slurries. The results were then utilized to optimize the dispersion properties of 43 vol% solids Si3N4-sintering aid slurries. Calcination of the Si3N4 powder was observed to result in significantly greater adsorption of NH4PA dispersant and effectively reduced the viscosity of the 32 vol% slurries. Lower viscosities of the optimized dispersion 43 vol% Si3N4-sintering aid slurries resulted in higher slipcast packing density compacts with smaller pore sizes and pore volumes, and corresponding higher sintered densities.  相似文献   

11.
Silicon oxynitride ceramics were reaction sintered and fully densified by hot isostatic pressing in the temperature range 1700°C to 1950°C from an equimolar mixture of silicon nitride and silica powders without additives. Conversion to Si2N2O increases steeply from a level around 5% of the crystalline phases at 1700°C to 80% at 1800°C, and increases a few percent further at higher temperatures. α -Si3N4 is the major residual crystalline phase below 1900°C. The hardness level for materials containing 85% Si2N2O is approximately 19 GPa, comparable with the hardness of Si3N4 hot isostatically pressed with 2.5 wt% Y2O3, while the fracture toughness level is around 3.1 MPa. m1/2, being approximately 0.8 MPa.m1/2 lower. The three-point bending strength increased with HIP temperature from approximately 300 to 500 MPa.  相似文献   

12.
We report a stabilized Si3N4 simply with nanocoatings of h-BN. Very thin BN coatings are enough for suppressing the decomposition of Si3N4 particles. This approach should open up a new potential way to prepare stabilized Si3N4. Reduced nitridation of H3BO3-coated Si3N4 powder at 1050°C in a flowing mixed 40% N2+60% H2 atmosphere, and then following heat-treatment at 1500°C in a flowing N2 atmosphere can realize the nanocoating of BN on Si3N4 particles. Compared with the Si3N4 powder without nanocoatings of h-BN, TG and XRD analysis showed that the obtained h-BN nanocoated Si3N4 powder demonstrated obviously improved stability in argon atmosphere.  相似文献   

13.
A new method for preparing high bending strength porous silicon nitride (Si3N4) ceramics with controlled porosity has been developed by using pressureless sintering techniques and phosphoric acid (H3PO4) as the pore-forming agent. The fabrication process is described in detail and the sintering mechanism of porous ceramics is analyzed by the X-ray diffraction method and thermal analysis. The microstructure and mechanical properties of the porous Si3N4 ceramics are investigated, as a function of the content of H3PO4. The resultant high porous Si3N4 ceramics sintered at 1000°–1200°C show a fine porous structure and a relative high bending strength. The porous structure is caused mainly by the volatilization of the H3PO4 and by the continous reaction of SiP2O7 binder, which could bond on to the Si3N4 grains. Porous Si3N4 ceramics with a porosity of 42%–63%, the bending strength of 50–120 MPa are obtained.  相似文献   

14.
Novel Lu-α-SiAlON ceramics were produced by hot pressing mixtures of Si3N4, Lu2O3, AlN, and Al2O3 at 1950°C for 2 h in a nitrogen atmosphere. The resultant SiAlON was fully dense and possessed a uniform, equiaxed microstructure with a grain size of ∼1 μm, which resulted in a high hardness of >19 GPa. In addition to high hardness, the sample showed very high optical transparency in the visible light region, with >70% transmission at higher wavelengths. This high transparency was attributed to the uniform, dense microstructure and lack of residual grain-boundary phase.  相似文献   

15.
Effect of Silicon Activity on Liquid-Phase Sintering of Nitrogen Ceramics   总被引:1,自引:0,他引:1  
Volatilization resulting from the thermal decomposition of Si3N4 causes the large weight loss and desintering phenomenon observed during pressureless sintering of Si3N4-5% MgO and sialon (z =2)-5% MgO. The addition of a few weight percent of Si to the powder suppresses this volatilazation and helps to achieve fully dense Si3N4 components.  相似文献   

16.
An amorphous Si-C-N powder with Y2O3 and Al2O3 powder as sintering additives was hot-pressed at 1900°C for 120 min in a nitrogen atmosphere. Changes in the crystalline phases and microstructure of the amorphous Si-C-N powder during sintering were investigated by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The defects at the fracture origins of the sintered bodies after bending tests also were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). XRD showed that alpha-Si3N4 was formed initially from the amorphous Si-C-N by 1530°C, which then transformed to ß-Si3N4 at 1600°C. Also, a slight formation of crystalline SiC occurred during the transformation from alpha- to ß-Si3N4, and it increased after the transformation was completed at 1900°C. TEM revealed that many SiC nanoparticles were incorporated into ß-Si3N4 grains after the transformation from alpha- to ß-Si3N4 at 1600°C. They were located at the triple points of the grain boundaries of ß-Si3N4 after continued Si3N4 grain growth at 1900°C. Besides the SiC nanoparticles, large agglomerations of carbon or SiC particles of 20-60 µm size were observed by SEM and EPMA at the fracture origins of the sintered bodies after the bending tests.  相似文献   

17.
TiN-coated Si3N4 particles were prepared by depositing TiO2 on the Si3N4 surfaces from Ti(O- i -C3H7)4 solution, the TiO2 being formed by controlled hydrolysis, then subsequently nitrided with NH3 gas. A homogeneous TiO2 coating was achieved by heating a Si3N4 suspension containing 1.0 vol% H2O with the precursor at 40°C. Nitridation successfully produced Si3N4 particles coated with 10–20 nm TiN particles. Spark plasma sintering of these TiN/Si3N4 particles at 1600°C yielded composite ceramics with a relative density of 96% at 25 vol% TiN and an electrical resistivity of 10−3Ω·cm in compositions of 17.5 and 25 vol% TiN/Si3N4, making these ceramics suitable for electric discharge machining.  相似文献   

18.
A Si3N4/TiC composite was previously demonstrated to exhibit improved wear resistance compared to a monolithic Si3N4 because of the formation of a lubricious oxide film containing Ti and Si at 900°C. Further improvements of the composite have been made in this study through additions of SiC whiskers and improved processing. Four materials—Si3N4, Si3N4/TiC, Si3N4/SiCwh, and Si3N4/TiC/SiCwh— were processed to further optimize the wear resistance of Si3N4 through improvements in strength, hardness, fracture toughness, and the coefficient of friction. Oscillatory pin on flat wear tests showed a decrease in the coefficient of friction from ∼0.7 (Si3N4) to ∼0.4 with the addition of TiC at temperatures reaching 900°C. Wear track profiles illustrated the absence of appreciable wear on the TiC-containing composites at temperatures above 700°C. Microscopic (SEM) and chemical (AES) characterization of the wear tracks is also included to deduce respective wear and lubricating mechanisms.  相似文献   

19.
A dense (97% of theoretical density) Si3N4—SiC composite containing 10 wt%β-SiC was prepared by introducing a SiC phase by the pyrolysis of a polymeric SiC precursor. The composite material was produced by mixing an alkyl/aryl-substituted polysilane with Si3N4 powder and, by subsequently forming green compacts, pyrolyzing the polymeric species, and finally sintering the sample. Synthesis and characterization of the polymeric compound was described. Its transformation reactions to SiC and the characterization of the ceramic residue were also studied. High ceramic yields were obtained by curing the as-synthesized polysilane at 500°C in an Ar atmosphere. The heat treatment had no effect on the good solubility of the polymeric precursor in organic solvents. This was important for processes such as infiltration, sealing, and coating and for the mixing of the polymer with powders for the preparation of homogeneous composite ceramics. The dense microstructure of the pyrolyzed and sintered Si3N4 powder–polysilane mixture exhibited reduced grain growth of the Si3N4 particles and a very homogeneous distribution of the in situ-formed β-SiC phase.  相似文献   

20.
Nitrogen-rich Ca–α-SiAlON ceramics with nominal compositions Ca x Si12−2 x Al2 x N16 and 0.2≤ x ≤2.6, extending along the Si3N4–1/2Ca3N2:3AlN tie line, were prepared from Si3N4, AlN, and CaH2 precursors by hot pressing at 1800°C. The x values attained were determined by energy-dispersive X-ray (EDX) microanalysis and X-ray powder diffraction (XRPD) data using the Rietveld method. The results show that Ca–α-SiAlONs form continuously within the compositional range x =0 to at least x =1.82. Phase assemblages, lattice parameters, Vickers hardness, and fracture toughness were determined and correlated to the calcium content, x . Owing to a high sintering temperature and the use of CaH2 as a precursor, grain growth was kinetically enhanced, resulting in self-reinforced microstructures with elongated grains. The obtained Ca–α-SiAlON ceramics demonstrate a combination of both high hardness ∼21 GPa, and high fracture toughness ∼5.5 MPa·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号