首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对单机系统,在假设生产系统为堕化系统,且生产过程中作业的加工不可中断的情况下,对考虑柔性时间窗口[[u,v]]下进行长度为[w]的周期预防性维护的调度问题进行了研究。建立了综合考虑生产调度和设备维护的混合整数规划模型,并设计了一套基于贪婪的启发式算法对所研究问题进行优化求解。通过Cplex和启发式算法求解结果的对比证明了算法可以快速、有效地解决此类问题。  相似文献   

2.
多机作业调度问题是一个经典的NP难问题,在应用中由于实际需要,会出现各种约束和变形,调度问题的研究成果决定着系统的性能.DataTurbo是作者参与的一个用于解决分布式数据迁移、集成和融合的平台,该平台承担着大数据量的分布式传输任务.在DataTurbo平台基础上,提出一种适用于数据交换与同步的分布式作业调度方案,并构建一个灵活的分布式调度算法框架,解决相关的调度问题.该调度方案是一种在线的、可并发的、作业可分解的多机调度方案.仿真实验结果显示,该调度方案在任务负载大、调度点稀疏情况下优势明显,能适用于数据交换同步作业,可作为数据交换与同步作业的动态调度方案,并为相关启发式算法建立基础模型.  相似文献   

3.
Real-time tasks are characterized by computational activities with timing constraints and classified into two categories: a hard real-time task and a soft real-time task. In hard real-time tasks, tardiness can be catastrophic. The goal of hard real-time tasks scheduling algorithms is to meet all tasks’ deadlines, in other words, to keep the feasibility of scheduling through admission control. However, in the case of soft real-time tasks, slight violation of deadlines is not so critical.In this paper, we propose a new scheduling algorithm for soft real-time tasks using multiobjective genetic algorithm (moGA) on multiprocessors system. It is assumed that tasks have precedence relations among them and are executed on homogeneous multiprocessor environment.The objective of the proposed scheduling algorithm is to minimize the total tardiness and total number of processors used. For these objectives, this paper combines adaptive weight approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. The effectiveness of the proposed algorithm is shown through simulation studies.  相似文献   

4.
Most production scheduling problems, including the standard flexible job-shop scheduling problem (FJSP), assume that machines are continuously available. However, in most realistic situations, machines may become unavailable during certain periods due to preventive maintenance (PM). In this paper, a flexible job-shop scheduling problem with machine availability constraints is considered. Each machine is subject to preventive maintenance during the planning period and the starting times of maintenance activities are either flexible in a time window or fixed beforehand. Moreover, two cases of maintenance resource constraint are considered: sufficient maintenance resource available or only one maintenance resource available. To deal with this variant FJSP problem with maintenance activities, a filtered beam search (FBS) based heuristic algorithm is proposed. With a modified branching scheme, the machine availability constraint and maintenance resource constraint can be easily incorporated into the proposed algorithm. Simulation experiments are conducted on some representative problems. The results demonstrate that the proposed filtered beam search based heuristic algorithm is a viable and effective approach for the FJSP with maintenance activities.  相似文献   

5.
针对异构分布式系统中处理器数量相对较少时优先级约束条件带来的副版本调度易失败问题,提出一种新型高可靠性主副版本调度算法(HRPB)。任务模型以有向无环图(DAG)表示,该算法共计调度主、副两个版本的任务。在任务优先级排序阶段,根据任务执行时间及截止时限来制定新指标平均最晚开始时间(ALST)进行排序;在任务处理器分配阶段,采取多一重备份策略以解决处理器数量相对较少时优先级约束条件带来的副版本调度易失败问题,并且改进了副版本调度时的可靠性指标计算方法。通过随机生成DAG图进行算法仿真测试,实验结果表明,HRPB比eFRD具有更优的副版本调度成功率、更高的系统可靠性。  相似文献   

6.
Energy-efficient task allocation and scheduling schemes with deterministic fault-tolerance capabilities are proposed for symmetric multiprocessor systems executing tasks with hard real-time constraints. The proposed heuristic is proven to achieve energy savings by optimally balancing application workload among processors in a system. Based on the observation that fault-free operation is expected to remain dominant in the near future and the probability of the worst case faults is low, an optimistic fault-tolerant heuristic is then proposed to achieve maximum energy savings in the absence of faults while degrading gradually to meet application timing requirements in the worst case of faults. Simulation results show that compared to state-of-art allocation and scheduling schemes proposed heuristic achieves average energy savings of up to 70%. It is also shown that optimistic approach is more resilient to variations in application utilizations and fault occurrences beyond system specifications.  相似文献   

7.
The majority of the scheduling studies carry a common assumption that machines are available all the time. However, machines may not always be available in the scheduling period due to breakdown or preventive maintenance. Taking preventive maintenance activity into consideration, we dealt with the two-machine flowshop scheduling problem with makespan objective. The preventive maintenance policy in this paper was dependent on the number of finished jobs. The integer programming model was proposed. We combined two recent constructive heuristics, HI algorithm and H algorithm, with Johnson’s algorithm, and named the combined heuristic H&J algorithm. We also developed a constructive heuristic, HD, with time complexities O(n2). Based on the difference in job processing times on two machines, both H&J and HD showed good performance, and the latter was slightly better. The HD algorithm was able to obtain the optimality in 98.88% of cases. We also employed the branch and bound (B&B) algorithm to obtain the optimum. With a good upper bound and a modified lower bound, the proposed B&B algorithm performed significantly effectively.  相似文献   

8.
集成预防性维护和流水线调度的鲁棒性优化研究   总被引:1,自引:0,他引:1  
针对离散流水车间, 设备故障率函数服从威布尔分布, 在考虑维护策略的基础上, 以工件的最终完工时间期望值为质量鲁棒性指标、以所有工序的开始加工时间的延迟总和的期望值为解鲁棒性指标, 建立了不确定性环境下预防性维护(Preventive maintenance, PM)和生产调度的集成优化模型, 联合决策各工序的开始加工时间和预防性维护位置. 进一步, 设计了基于工件优先列表、有效代理指标、邻域搜索机制的三阶段启发式算法对模型进行求解. 最后, 数值实验与传统方法对比结果表明, 系统最优缓冲时间随着解鲁棒性权重的增大而逐渐增加, 且质量鲁棒性堕化速度远小于解鲁棒性提升的速度, 使得其与传统方法相比总体目标愈加优异.  相似文献   

9.
This paper addresses the open shop scheduling problem to minimize the total completion time, provided that one of the machines has to process the jobs in a given sequence. The problem is NP-hard in the strong sense even for the two-machine case. A lower bound is derived based on the optimal solution of a relaxed problem in which the operations on every machine may overlap except for the machine with a given sequence of jobs. This relaxed problem is NP-hard in the ordinary sense, however it can be quickly solved via a decomposition into subset-sum problems. Both heuristic and branch-and-bound algorithm are proposed. Experimental results show that the heuristic is efficient for solving large-scaled problems, and the branch-and-bound algorithm performs well on small-scaled problems.Scope and purposeShop scheduling problems, widely used in the modeling of industrial production processes, are receiving an increasing amount of attention from researchers. To model practical production processes more closely, additional processing restrictions can be introduced, e.g., the resource constraints, the no-wait in process requirement, the precedence constraints, etc. This paper considers the total completion time open shop scheduling problem with a given sequence of jobs on one machine. This model belongs to a new class of shop scheduling problems under machine-dependent precedence constraints. This problem is NP-hard in the strong sense. A heuristic is proposed to efficiently solve large-scaled problems and a branch-and-bound algorithm is presented to optimally solve small-scaled problems. Computational experience is also reported.  相似文献   

10.
In this paper, a heuristic dynamic scheduling scheme for parallel real-time jobs executing on a heterogeneous cluster is presented. In our system model, parallel real-time jobs, which are modeled by directed acyclic graphs, arrive at a heterogeneous cluster following a Poisson process. A job is said to be feasible if all its tasks meet their respective deadlines. The scheduling algorithm proposed in this paper takes reliability measures into account, thereby enhancing the reliability of heterogeneous clusters without any additional hardware cost. To make scheduling results more realistic and precise, we incorporate scheduling and dispatching times into the proposed scheduling approach. An admission control mechanism is in place so that parallel real-time jobs whose deadlines cannot be guaranteed are rejected by the system. For experimental performance study, we have considered a real world application as well as synthetic workloads. Simulation results show that compared with existing scheduling algorithms in the literature, our scheduling algorithm reduces reliability cost by up to 71.4% (with an average of 63.7%) while improving schedulability over a spectrum of workload and system parameters. Furthermore, results suggest that shortening scheduling times leads to a higher guarantee ratio. Hence, if parallel scheduling algorithms are applied to shorten scheduling times, the performance of heterogeneous clusters will be further enhanced.  相似文献   

11.
异构分布式控制系统中实时任务的调度算法   总被引:3,自引:0,他引:3  
分布式控制系统是一种应用极为广泛的异构分布式实时系统,系统中同时存在有多种实时任务,如何将这些任务分配到各个处理器上并保证它们的时限是系统关键技术之一.在结合启发式任务分配算法和单处理器任务调度算法的基础上,提出了一种分布式控制系统的调度算法.该算法考虑了各个处理器的负载均衡,同时又能满足所有任务的时限.仿真结果表明了算法的有效性.  相似文献   

12.
Real-time systems cover a wide application domain. This paper presents an efficient heuristic algorithm for enforcing the schedulability of aperiodic hard real-time tasks arriving simultaneously with precedence constraints and individual deadlines. The proposed co-synthesis algorithm integrates partitioning and non-preemptive scheduling. Reconfigurable FPGAs are incrementally added when schedulability suffers in a uniprocessor system. Initially, a schedule that minimizes the maximum lateness and satisfies the precedence constraints is made. If individual timing constraints are not met in this schedule, some tasks are selected and transferred to dynamically reconfigured FPGAs. The proposed algorithm was implemented and tested with a large number of task graphs with task size as high as 700 nodes. The algorithm could not only achieve schedulability but also could reduce the total completion time of the task graph. Moreover, incremental addition of reconfigurable FPGAs yielded a cost effective solution.  相似文献   

13.
Technology scalings in semiconductors have enabled the integration of dozens of processing elements (PEs) onto a single chip (MPSoC). Scheduling application tasks onto the target MPSoC has been widely reported in the literature. Both technology scalings and resource competitions among applications have led to the variations of availability resources at runtime. While adaptive static schedules with predictable responses to runtime resource variations have consequently been proposed, a large number of task migrations upon PE failures in this reconfigurable schedule scheme will lead to excessive migration cost among processors and performance degradation. In this paper, we present an algorithm to reduce the number of task migrations while retaining the benefits of the fore techniques. Through embedding several soft constraints into the baseline heuristic scheduling algorithm, the proposed algorithm can decrease the number of task migrations significantly on the basis of holding the advantages of the initial dynamic reconfigurable schedule scheme. The performance evaluation of the proposed technique is carried out by incorporation into a well known heuristic scheduling algorithm. The simulation results confirm its effectiveness in minimizing the number of task migrations during dynamic reconfiguration.  相似文献   

14.
This paper addresses the problem of task allocation in heterogeneous distributed systems with the goal of maximizing the system reliability. It first develops an allocation model for reliability based on a cost function representing the unreliability caused by the execution of tasks on the system processors and the unreliability caused by the interprocessor communication time subject to constraints imposed by both the application and the system resources. It then presents a heuristic algorithm derived from the well-known simulated annealing (SA) technique to quickly solve the mentioned problem. The performance of the proposed algorithm is evaluated through experimental studies on a large number of randomly generated instances. Indeed, the quality of solutions are compared with those derived by using the branch-and-bound (BB) technique.  相似文献   

15.
This paper addresses the problem of finding a robust and stable schedule for a single machine with availability constraints. The machine suffers unexpected breakdowns and follows the Weibull failure function. A joint model for integrating run-based preventive maintenance (PM) into the production scheduling problem is proposed, in which the sequence of jobs, the PM times and the planned completion times of jobs are proactively determined simultaneously. Aiming at optimizing the bi-objective of system robustness and stability, a genetic algorithm based on the properties of the optimal schedule is proposed. The experimental results demonstrate that the proposed algorithm is efficient and effective under practical problem sizes. In addition, the impact of degree of uncertainty on the performance and the tradeoff between robustness and stability are explored in detail.  相似文献   

16.
一种面向同构集群系统的并行任务节能调度优化方法   总被引:1,自引:0,他引:1  
节能调度算法设计是高性能计算领域中的一个研究热点.复制调度算法能够减少后继任务等待延时,缩短任务总体调度时间,但是耗费了更多的能量.为此,作者提出一种启发式处理器合并优化方法 PRO.该方法按照任务最早开始时间和最早结束时间查找处理器时间空隙,将轻负载处理器上的任务重新分配到其它处理器上,从而减少使用的处理器数目,降低系统总体能耗.实验结果表明,和已有的复制任务调度算法TDS、EAD和PEBD相比,优化后的调度算法在不增加调度时间的条件下,能够明显减少使用的处理器数和系统总体能耗,从而更好地实现性能和能耗之间的平衡.  相似文献   

17.
This research focuses on the problem of scheduling jobs on a single machine that requires periodic maintenance with the objective of minimizing the number of tardy jobs. We present a two-phase heuristic algorithm in which an initial solution is obtained first with a method modified from Moore's algorithm for the problem without maintenance and then the solution is improved in the second phase. Performance of the proposed heuristic algorithm is evaluated through computational experiments on randomly generated problem instances and results show that the heuristic gives solutions close to those obtained from a commercial integer programming solver in much shorter time and works better than an existing heuristic algorithm in terms of the solution quality.  相似文献   

18.
随着信息技术的发展,工业嵌入式系统的功能规模迅速地增长,大大增加了硬件成本,需缩减硬件成本以提高利润.同时,为满足系统的功能安全约束,对任务和消息进行整体调度的问题也亟待解决.以硬件成本缩减为目标,设计了硬件成本缩减方案,定义了任务到处理器映射、任务和任务、任务和消息等的时序约束关系,提出了基于整数线性规划的硬件成本缩...  相似文献   

19.
针对实时周期性任务集在变电压处理器上的非占先式能耗感知调度问题,在简单遗传算法基础上,提出了一种通过构造特定的遗传过程以自然地满足时序和能耗约束的启发式算法.与贪婪算法相比,该算法在提高系统性能方面具有明显的优势,而且能耗利用效率随着能耗约束值的减小而增大,说明算法具有良好的能耗感知特性.  相似文献   

20.
The execution of a workflow application can result in an imbalanced workload among allocated processors, ultimately resulting in a waste of resources and a higher cost to the user. Here, we consider a dynamic resource management system in which processors are reserved not for a job but only to run a task, thus allowing a higher resource usage rate. This paper presents a scheduling algorithm that manages concurrent workflows in a dynamic environment in which jobs are submitted by users at any moment in time, on shared heterogeneous resources, and constrained to a specified budget and deadline for each job. Recent research attempted to propose dynamic strategies for concurrent workflows but only addressed fairness in resource sharing among applications while minimizing the execution time. The Multi-QoS Profit-Aware scheduling algorithm (MQ-PAS) proposed here is able to increase the profit achieved by the provider by considering the budget available for each job to define tasks priorities. We study the scalability of the algorithm with different types of workflows and infrastructures. The experimental results show that our strategy improves provider revenue significantly and obtains comparable successful rates of completed jobs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号