共查询到20条相似文献,搜索用时 15 毫秒
1.
B.R. Sarkar B. Doloi B. Bhattacharyya 《The International Journal of Advanced Manufacturing Technology》2006,28(9):873-881
The electrochemical discharge machining (ECDM) process has a potential in the machining of silicon nitride ceramics. This
paper describes the development of a second order, non-linear mathematical model for establishing the relationship among machining
parameters, such as applied voltage, electrolyte concentration and inter-electrode gap, with the dominant machining process
criteria, namely material removal rate (MRR), radial overcut (ROC) and thickness of heat affected zone (HAZ), during an ECDM
operation on silicon nitride. The model is developed based on response surface methodology (RSM) using the relevant experimental
data, which are obtained during an ECDM micro-drilling operation on silicon nitride ceramics. We also offer an analysis of
variance (ANOVA) and a confirmation test to verify the fit and adequacy of the developed mathematical models. From the parametric
analyses based on mathematical modelling, it can be recommended that applied voltage has more significant effects on MRR,
ROC and HAZ thickness during ECDM micro-drilling operation as compared to other machining parameters such as electrolyte concentration
and inter-electrode gap. 相似文献
2.
T. A. El-Taweel 《The International Journal of Advanced Manufacturing Technology》2008,37(7-8):705-714
This paper integrates the electrochemical turning (ECT) process and magnetic abrasive finishing (MAF) to produce a combined
process that improves the material removal rate (MRR) and reduces surface roughness (SR). The present study emphasizes the
features of the development of comprehensive mathematical models based on response surface methodology (RSM) for correlating
the interactive and higher-order influences of major machining parameters, i.e. magnetic flux density, applied voltage, tool
feed rate and workpiece rotational speed on MRR and SR of 6061 Al/Al2O3 (10% wt) composite. The paper also highlights the various test results that also confirm the validity and correctness of
the established mathematical models for in-depth analysis of the effects of hybrid ECT- MAF process parameters on metal removal
rate and surface roughness. Further, optimal combination of these parameters has been evaluated and it can be used in order
to maximize MRR and minimize SR. The results demonstrate that assisting ECT with MAF leads to an increase machining efficiency
and resultant surface quality significantly, as compared to that achieved with the traditional ECT of some 147.6% and 33%,
respectively. 相似文献
3.
Ko-Ta Chiang Fu-Ping Chang 《The International Journal of Advanced Manufacturing Technology》2007,33(5-6):480-488
This paper presents a residual modified grey dynamic model RGM(1,3) in order to fit and predict the performance characteristics
of an electro-conductive ceramic (Al2O3+30%TiC) during electrical discharge machining (EDM). Grey system theory is suitable for the system in which some information
is poor, incomplete and uncertain, so it is feasible to study the performance characteristics of EDM with this model. The
RGM(1,3) model is modified to promote the forecasting accuracy of predicting values using the residual grey dynamic model
GM(1,1). The fitted and predicted values of various performance characteristics, including the material removal rate (MRR),
maximum surface roughness (Rmax), and electrode wear ratio (EWR) agreed sufficiently with the experimental data. It is proved
that RGM(1,3) model fitted and predicted the above performance characteristics with a high predicting accuracy. Therefore
this procedure of grey forecasting model is relatively simple and convenient, and it is greatly suited for the analysis of
question which obtained a few experimental data, and acts an auxiliary to calculate the unfinished experimental data. 相似文献
4.
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials.In 3D SSMEDM process,the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap,instead of the traditional methods that depend on experiential models or intermittent compensation.However,the effects of process parameters on 3D SSMEDM have not been reported up until now.In this study,the emphasis is laid on the effects of pulse duration,peak current,machining polarity,track style,track overlap,and scanning velocity on the 3D SSMEDM performances of machining efficiency,processing status,and surface accuracy.A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon.The experimental results were obtained as follows.Peak current plays a main role in machining efficiency and surface accuracy.Pulse duration affects obviously the stability of discharge state.The material removal rate of cathode processing is about 3/5 of that of anode processing.Compared with direction-parallel path,contour-parallel path is better in counteracting the lateral wear of tool electrode end.Scanning velocity should be selected moderately to avoid electric arc and short.Track overlap should be slightly less than the radius of tool electrode.In addition,a typical 3D micro structure of eye shape was machined based on the optimized process parameters.These results are beneficial to improve machining stability,accuracy,and efficiency in 3D SSMEDM. 相似文献
5.
Today the use of high-strength carbon fiber-reinforced plastics (CFRP) composite as a material for many engineering applications is showing an increasing demand in the industry. These composites are replacing the traditional use of steel because they offer many advantages such as very light weight, high strength, and high stiffness associated with good corrosion-resistant properties. Unfortunately, there is little technological knowledge on the electrical discharge machining (EDM) process of high-strength composite materials, especially about the CFRP. In this work, a study has made into the possibility of using EDM process as a means of machining CFRP composite. Various cutting conditions such as peak current, pulse-on time, pulse-off time and open-circuit voltage were selected to perform electrical discharge machining. The effect of electrode rotation was also studied. Optimum cutting conditions and machine settings for EDM were chosen for machining CFRP composites. 相似文献
6.
Electrical discharge machining (EDM) is one of the earliest non-traditional machining processes. EDM process is based on thermoelectric energy between the work piece and an electrode. In electrical discharge machining (EDM), a process utilizing the removal phenomenon of electrical discharge in dielectric, the working fluid plays an important role affecting the material removal rate and the properties of the machined surface. Choosing the right dielectric fluid is critical for successful operations. This paper presents a literature survey on the use of dielectric fluids and also their effects in electrical discharge machining characteristics. 相似文献
7.
K. M. Patel Pulak M. Pandey P. Venkateswara Rao 《The International Journal of Advanced Manufacturing Technology》2010,47(9-12):1137-1147
The advantages of electrical discharge machining (EDM) in machining of complex ceramic components have promoted research in the area of EDM of ceramic composites. The recent developments in ceramic composites are focused not only on the improvements of strength and toughness, but also on possibilities for difficult-to-machine shapes using EDM. One such EDM-machinable ceramic composite material (Al2O3–SiCw–TiC) has been developed recently and has been selected in the present study to investigate its EDM machinability. Experiments were conducted using discharge current, pulse-on time, duty cycle and gap voltage as typical process parameters. The grey relational analysis was adopted to obtain grey relational grade for EDM process with multiple characteristics namely material removal rate and surface roughness. Analysis of variance was used to study the significance of process variables on grey relational grade which showed discharge current and duty cycle to be most significant parameters. Other than discharge current and duty cycle, pulse-on time and gap voltage have also been found to be significant. To validate the study, confirmation experiment has been carried out at optimum set of parameters and predicted results have been found to be in good agreement with experimental findings. 相似文献
8.
Optimisation of the electrical discharge machining process using a GA-based neural network 总被引:2,自引:0,他引:2
J. C. Su J. Y. Kao Y. S. Tarng 《The International Journal of Advanced Manufacturing Technology》2004,24(1-2):81-90
In this paper, the optimisation of the EDM process parameters from the rough cutting stage to the finish cutting stage has been reported. A trained neural network was used to establish the relationship between the process parameters and machining performance. Genetic algorithms with properly defined objective functions were then adapted to the neural network to determine the optimal process parameters. Examples with specifications intentionally assigned the same values as those recorded in the database or selected arbitrarily have been fed into the developed GA-based neural network in order to verify the optimisation ability throughout the machining process. Accordingly, the optimised results indicate that the GA-based neural network can be successfully used to generate optimal process parameters from the rough cutting stage to the finish cutting stage. 相似文献
9.
混粉电火花加工中粉末对工件表面的影响 总被引:1,自引:1,他引:1
对不同加工条件下混粉电火花加工后工件表面的硅含量进行了对比测量。实验结果表明:当峰值电流小于4A时,混粉电火花加工后的工件表面硅含量随峰值电流的增大而急剧减小,而当峰值电流大于4A时,工件表面硅含量随峰值电流的增大而缓慢增加;混粉电火花加工后的工件表面硅含量随脉宽的增大而增加;在其他加工条件相同的情况下,对于相同的单次放电脉冲能量,混粉电火花加工获得的工件表面硅含量随峰值电流变化的关系呈近似二次曲线。引入熵的概念,对产生上述结论的原因进行了分析,并解释了混粉电火花加工可以改善工件表面质量的机理。 相似文献
10.
Hard-to-machine alloys are commonly used for industrial applications in the aeronautical, nuclear and automotive sectors, where the materials must have excellent resistance to corrosion and oxidation, high temperature resistance and high mechanical strength. In this present study the influence of different parameters of the electrical discharge machining process on surface roughness, electrode wear and material removal rate have been studied. Regression techniques are employed to model arithmetic mean deviation Ra (μm), peak count Pc (1/cm), material removal rate MRR (mm3/min) and electrode wear EW (%). All these parameters have been studied in terms of current intensity supplied by the generator of the electrical discharge machine I (A), pulse time ti (μs), duty cycle η and open-circuit voltage U (V). This modelling allows us to obtain mathematical data and models to predict that the most influential factor in MRR and Ra is the current intensity and in the case of EW and Pc is the pulse time. 相似文献
11.
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a Newtonian fluid and the flow laminar with no wall slip. 相似文献
12.
Particleboard is a wood based composite extensively used in wood working. Drilling is the most commonly used machining process in furniture industries. The surface characteristics and the damage free drilling are significantly influenced by the machining parameters. The thrust force developed during drilling play a major role in gaining the surface quality and minimizing the delamination tendency. The objective of this study is to measure and analyze the cutting conditions which influences the thrust force in drilling of particle board panels. The parameters considered are spindle speed, feed rate and point angle. The drilling experiments are performed based on Taguchi’s design of experiments and a response surface methodology (RSM) based mathematical model is developed to predict the influence of cutting parameters on thrust force. The results showed that high spindle speed with low feed rate combination minimizes the thrust force in drilling of pre-laminated particle board (PB) panels. 相似文献
13.
Nor Ain Jamil Hosni 《Machining Science and Technology》2020,24(3):398-424
AbstractPowder mixed EDM (PMEDM) is recognized as an advanced and innovative technique with enhanced performance and limited drawbacks in comparison to conventional EDM method. This study investigates the effect of powder particle size, various powder concentrations (Cp), and surfactant concentrations (Cs) on the performance of EDM. Since the machining characteristics are highly dependent on the dielectric performances, significant attention has been directed to introduce Cr powder and Span-20 surfactant into the dielectric fluid to achieve higher productivity and enhanced surface integrity. The EDM machining was carried out on AISI D2 hardened steel through ´Plug & Plaý dielectric circulating system attached to the main machine in order to evaluate the machining performances (i.e. MRR, EWR, and Ra). Interestingly, machining performance was improved with combination of Cr powder mixed and span-20 surfactant. By comparing the performance of span-20 surfactant and micro-nano chromium, the result within selected parameters shows that the span-20 surfactant and nano-chromium is the better choice for the EDM of AISI D2 hardened steel. In the machinability studies, the EDM machining of AISI D2 hardened steel by using span-20 surfactant and nano-chromium has exhibited the excellent machining performances, which led to 45.08% MRR enhancement and 68.89% Ra enhancement comparing to micro-chromium powder and span-20 surfactant led to 35.28% MRR and 28.96% Ra. Furthermore, cost analysis revealed that the nano-Cr powder size was approximately 4 times more economical than micro-Cr powder in machining of AISI D2 hardened steel, although the price for 1?kg is quite expensive. 相似文献
14.
Nimonic C-263 alloy is extensively used in the fields of aerospace, gas turbine blades, power generators and heat exchangers because of its unique properties. However, the machining of this alloy is difficult due to low thermal conductivity and work hardening characteristics. This paper presents the experimental investigation and analysis of the machining parameters while turning the nimonic C-263 alloy, using whisker reinforced ceramic inserts. The experiments were designed using Taguchi’s experimental design. The parameters considered for the experiments are cutting speed, feed rate and depth of cut. Process performance indicators, viz., the cutting force, tool wear and surface finish were measured. An empirical model has been created for predicting the cutting force, flank wear and surface roughness through response surface methodology (RSM). The desirability function approach has been used for multi response optimization. The influence of the different parameters and their interactions on the cutting force, flank wear and surface roughness are also studied in detail and presented in this study. Based on the cutting force, flank wear and surface roughness, optimized machining conditions were observed in the region of 210 m/min cutting speed and 0.05 mm/rev feed rate and 0.50 mm depth of cut. The results were confirmed by conducting further confirmation tests. 相似文献
15.
On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations 总被引:1,自引:0,他引:1
Zahia Hessainia Ahmed Belbah Mohamed Athmane Yallese Tarek Mabrouki Jean-François Rigal 《Measurement》2013
This research work concerns the elaboration of a surface roughness model in the case of hard turning by exploiting the response surface methodology (RSM). The main input parameters of this model are the cutting parameters such as cutting speed, feed rate, depth of cut and tool vibration in radial and in main cutting force directions. The machined material tested is the 42CrMo4 hardened steel by Al2O3/TiC mixed ceramic cutting tool under different conditions. The model is able to predict surface roughness of Ra and Rt using an experimental data when machining steels. The combined effects of cutting parameters and tool vibration on surface roughness were investigated while employing the analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of cutting parameters and tool vibration with respect to announced objectives which are the prediction of surface roughness. The adequacy of the model was verified when plotting the residuals values. The results indicate that the feed rate is the dominant factor affecting the surface roughness, whereas vibrations on both pre-cited directions have a low effect on it. Moreover, a good agreement was observed between the predicted and the experimental surface roughness. Optimal cutting condition and tool vibrations leading to the minimum surface roughness were highlighted. 相似文献
16.
Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. However, the mechanics of the process with respect to crack initiation and propagation, and stress development in the ceramic workpiece subsurface are still not well understood. This article presents experimental simulation of the process mechanics in an attempt to analyze the material removal mechanism in machining of ceramic (Al2O3). It is found that low-impact force causes only structural disintegration and particle dislocation. The high-impact force contributes to cone cracks and subsequent crater damage. 相似文献
17.
18.
19.
《Measurement》2016
This study involves modelling of experimental data of surface roughness of Co28Cr6Mo medical alloy machined on a CNC lathe based on cutting parameters (spindle rotational speed, feed rate, depth of cut and tool tip radius). In order to determine critical states of the cutting parameters variance analysis (ANOVA) was applied while optimisation of the parameters affecting the surface roughness was achieved with the Response Surface Methodology (RSM) that is based on the Taguchi orthogonal test design. The validity of the developed models necessary for estimation of the surface roughness values (Ra, Rz), was approximately 92%. It was found that for Ra 38% of the most effective parameters is on the tool tip radius, followed by 33% on the feed rate whereas for Rz tool tip radius occupied 43% with the feed being at 33% rate. To achieve the minimum surface roughness, the optimum values obtained for spindle rpm, feed rate, depth of cut and tool tip radius were respectively, 318 rpm, 0.1 mm/rev, 0.7 mm and 0.8 mm. 相似文献
20.
Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process 总被引:2,自引:0,他引:2
Magnetic abrasive finishing (MAF) is one of the advanced finishing processes in which workpiece is kept between two magnets, and cutting force is controlled by working gap and magnetic field between the two magnets. MAF setup is designed for finishing cylindrical workpieces and it is mounted on lathe machine. The loosely bounded powder is prepared for experimentation by homogeneous mixing of magnetic powder (Fe powder of 300 mesh size (51.4 μm)), abrasive powder (Al2O3 of 600 mesh size (25.7 μm), and lubricant called servospin-12 oil. To investigate the effects of working gap and circumferential speed on material removal, change in surface finish and percent improvement in surface finish, a series of experiments have been conducted using in-house fabricated setup. Based upon the results, in general, material removal decreases by increasing working gap or decreasing circumferential speed of the workpiece. Change in surface finish increases by increasing circumferential speed of the workpiece. 相似文献