首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The biodegradation of selected non-adsorbing persistent polar pollutants (P(3)) during wastewater (WW) treatment was studied by comparing a lab-scale membrane bioreactor (MBR) running in parallel to activated sludge treatment (AST). The investigated P(3) are relevant representatives or metabolites from the compound classes: pesticides, pharmaceuticals, insect repellents, flame retardants and anionic surfactants. Analyses of all these P(3) at low ng L(-1) levels with sufficient standard deviations was performed in WW influents and effluents. Non-degradable micropollutants, such as EDTA and carbamazepine were not eliminated at all during WW treatment by any technique. However, the MBR showed significant better removals compared to AST for the investigated poorly biodegradable P(3), such as diclofenac, mecoprop and sulfophenylcarboxylates. An application of such an in terms of sludge retention time optimised MBR may lead to a reduction of these P(3) in the watercycle.  相似文献   

2.
Degradation of 2-chlorobenzoic acid (2-CBA), a model recalcitrant chlorinated organic compound, by pure cultures of Burkholderia cepacia strain DNT with (transformed B. cepacia) and without (untransformed B. cepacia) the bacterial hemoglobin (Vitreoscilla hemoglobin, VHb) gene, vgb, was investigated in parallel membrane bioreactors (MBRs). This was done aseptically to prevent contamination during the operation of the MBRs. The objective was to determine whether the degradation of 2-CBA by cometabolism, using acetate as a primary carbon source, under hypoxic conditions might be enhanced for vgb-bearing cells in MBRs. The 2-CBA removal efficiency of transformed B. cepacia (97-99%) was slightly higher than that of untransformed B. cepacia (95-99%) at all stages. The average amount of chloride released from 2-CBA by transformed cells was also higher than for untransformed cells, 92-96% compared to 64-84% of the maximum theoretical amount, the exact value depending on the operating conditions. These results indicate that 2-CBA degradation/transformation is not accompanied by the stoichiometric release of chloride for the untransformed strain. The difference between percentages of 2-CBA removal and chloride release by untransformed cells was attributed to persistence, under hypoxic conditions, of the 2-CBA chlorine atom in 2-CBA metabolites. Growth of transformed cells was also significantly enhanced under hypoxic conditions compared to untransformed cells. For varying media compositions, the transformed cells reached higher cell densities (3.2-5.4 g/L) relative to untransformed cells (2.8-4.7 g/L) at food to microorganism ratios ranging from 0.44-0.59 to 0.38-0.49 g COD/g biomass-d The observed yields thus ranged from 0.16-0.20 and 0.15-0.18 g TSS/g COD for untransformed and transformed cells, respectively. The value of the yield depended on medium composition. The MBR system using vgb-containing B. cepacia maintained a high biomass concentration without oxygen limitations and provided cell-free effluent. Hence, it may be useful for treating high volumes of water contaminated with low levels of recalcitrant organics.  相似文献   

3.
Soil carbon (C) long term storage is influenced by the balance among ecosystem net primary productivity (NPP), the rate of delivery of new organic matter to soil pools and the decomposition of soil organic matter (SOM). The increase of NPP under elevated CO(2) can result in a greater production and higher turnover of fine roots or root exudation and, in turn, in an increase of labile C belowground. The aim of this work was to detect if changes in labile C substrates influenced the organic C storage in soils, verifying (i) whether treatments with elevated CO(2) and N fertilization induced changes in the amount and quality of labile C pools and in microbial C immobilization and (ii) whether these changes provoked modifications in the microbial C mineralization activity, and therefore changes in soil C losses. The effect of elevated CO(2) was a significant increase in both seasons (June and October 2004), of all labile C fractions: microbial biomass C (MBC), K(2)SO(4) extractable C (ExC), and water soluble C (WSC). The C/N ratio of the microbial biomass and of the K(2)SO(4) extractable SOM presented a seasonal fluctuation showing higher values in June, whereas the elevated CO(2) increased significantly the C/N ratio of these fractions independent of the season and the N addition, indicating a lower quality of labile SOM. Microbial respiration was more than doubled in October compared to June, confirming that changes in substrate quality and nutrient availability, occurring in the plantation at the beginning and at the end of the vegetative period, influenced the microbial activity in the bulk soil. Furthermore, the microbial respiration response to N fertilization was dependent on the season, with an opposite effect between June and October. The kinetic parameters calculated according to the first-order equation C(m)=C(0)(1-e(-kt)) were unaffected by elevated CO(2) treatment, except C(0)k and MR(basal), that showed a significant reduction, ascribable to (i) a lower quality of labile pools, and (ii) a more efficient microbial biomass in the use of available substrates. The C surplus found in elevated CO(2) soils was indeed immobilized and used for microbial growth, thus excluding a priming effect mechanism of elevated CO(2) on SOM decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号