首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of two protein kinase C (PKC) inhibitors, calphostin C and staurosporine, on the in vitro ovulation of goldfish (Carassius auratus) oocytes were investigated. Ovulation was stimulated by prostaglandin (PG) F2 alpha (PGF2 alpha, 2.0 micrograms/ml), by sodium orthovanadate (0.1 mM), by a combination of the phorbol ester phorbol 12-myristate-13-acetate (PMA, 0.1 micrograms/ml) and calcium ionophore A23187 (0.05 micrograms/ml), by thapsigargin (0.2 micrograms/ml), and by elevated pH (8.1). In addition, the effects of these inhibitors on the PKC activity of the goldfish follicle wall was determined by use of a specific peptide substrate phosphorylation assay. At 0.1 microM, staurosporine significantly blocked ovulation induced by all agents. However, at lower (0.01 microM) levels it blocked only PMA/A23187-induced ovulation. In contrast, calphostin significantly blocked only PMA/A23187-induced ovulation, although there was a decrease in pH-induced ovulation at lower calphostin concentrations. Both calphostin and staurosporine blocked follicular PKC activity at levels that were inhibitory to ovulation. In addition, staurosporine significantly blocked PKC activity at levels even lower than those needed to block ovulation. The combined results suggest that orthovanadate, PGF2 alpha, and thapsigargin do not require PKC activation for the induction of ovulation, whereas PMA/A23187 does.  相似文献   

2.
Previously, we have shown that tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, increases the synthesis and release of endothelin-1 (ET-1), a potent vasoactive peptide from human non-pigmented ciliary epithelial (HNPE) cells, in a protein kinase C (PKC)-dependent manner. Diacylglycerol (DAG) and intracellular calcium ([Ca2+]i) are well known activators of PKC. Some cytokines induce PKC activation by stimulating phospholipase C that hydrolyzes phosphatidylinositol bisphosphate (PIP2) into IP3 (intracellular calcium mobilizer) and DAG. In this study, the existence of a similar pathway was evaluated in HNPE cells treated with TNF-alpha, using intracellular calcium ([Ca2+]i) measurements, PKC translocation assays and thin-layer chromatography (TLC) for quantification of DAG. Incubation times for agonists and inhibitors ranged from 1-30 minutes. The increase in DAG levels with TNF-alpha treatment was consistent with the observed translocation of the calcium-dependent PKC alpha isoform from the cytosol to the plasma membrane. However, these observations were not accompanied by a concomitant increase in [Ca2+]i. Similar translocation responses were observed with phorbol ester (phorbol 12-myristate 13-acetate) treatment. Our results indicate that TNF-alpha-induced PKC activation in HNPE cells occurs as a result of elevated DAG levels and is not due to an increase in intracellular calcium. Activated PKC, could enhance the pro-inflammatory responses of TNF-alpha in part by increasing the production of endothelins in the eye.  相似文献   

3.
4.
5.
The induction of Fas ligand (FasL) mRNA expression and FasL-mediated cytotoxicity in CD8+ CTL is a rapid and transient response to activation via the TCR. This response can also be initiated by pharmacologic activation of two major TCR signaling pathways using phorbol ester (PMA) and calcium ionophore (ionomycin). In these experiments using CD8+ alloreactive cell lines, we demonstrate that induction of FasL mRNA can occur in response to either PMA or ionomycin independently. However, only the ionomycin pathway is sensitive to inhibition by cyclosporine A. Both pathways are blocked by genistein, a general protein tyrosine kinase inhibitor. The magnitude of induction of FasL mRNA is not proportional to the manifested FasL-dependent cytotoxicity. We also found a calcium requirement for cytotoxicity that is unrelated to FasL mRNA induction. In addition to the positive effects of constitutive and induced calcium levels on FasL-mediated cytotoxicity, calcium may play a role in the rapid down-regulation of the response. We also present data suggesting that CD2 and LFA-1 contribute to FasL-mediated cytotoxicity. Together these results suggest pathways by which partial TCR activation could, among the many activation-induced functions of a T cell, selectively lead to the induction of FasL-mediated cytotoxicity that can be regulated by lineage/ activation-dependent accessory molecules on the target.  相似文献   

6.
7.
We have found that phosphorylation of a G-protein-coupled receptor by protein kinase C (PKC) disrupts modulation of ion channels by the receptor. In AtT-20 cells transfected with rat cannabinoid receptor (CB1), the activation of an inwardly rectifying potassium current (Kir current) and depression of P/Q-type calcium channels by cannabinoids were prevented by stimulation of protein kinase C by 100 nM phorbol 12-myristate 13-acetate (PMA). In contrast, activation of Kir current by somatostatin was unaffected, and inhibition of calcium channels was only modestly attenuated. The possibility that PKC acted by phosphorylating CB1 receptors was confirmed by demonstrating that PKC phosphorylated a single serine (S317) of a fusion protein incorporating the third intracellular loop of CB1. Mutating this serine to alanine did not affect the ability of CB1 to modulate currents, but it eliminated disruption by PMA, demonstrating that PKC can disrupt ion channel modulation by receptor phosphorylation.  相似文献   

8.
Phosphorylation of specific amino acid residues is believed to be crucial for the agonist-induced regulation of several G protein-coupled receptors. This is especially true for the three types of opioid receptors (mu, delta, and kappa), which contain consensus sites for phosphorylation by numerous protein kinases. Protein kinase C (PKC) has been shown to catalyze the in vitro phosphorylation of mu- and delta-opioid receptors and to potentiate agonist-induced receptor desensitization. In this series of experiments, we continue our investigation of how opioid-activated PKC contributes to homologous receptor down-regulation and then expand our focus to include the exploration of the mechanism(s) by which mu-opioids produce PKC translocation in SH-SY5Y neuroblastoma cells. [D-Ala2,N-Me-Phe4,Gly-ol]enkephalin (DAMGO)-induced PKC translocation follows a time-dependent and biphasic pattern beginning 2 h after opioid addition, when a pronounced translocation of PKC to the plasma membrane occurs. When opioid exposure is lengthened to >12 h, both cytosolic and particulate PKC levels drop significantly below those of control-treated cells in a process we termed "reverse translocation." The opioid receptor antagonist naloxone, the PKC inhibitor chelerythrine, and the L-type calcium channel antagonist nimodipine attenuated opioid-mediated effects on PKC and mu-receptor down-regulation, suggesting that this is a process partially regulated by Ca2+-dependent PKC isoforms. However, chronic exposure to phorbol ester, which depletes the cells of diacylglycerol (DAG) and Ca2+-sensitive PKC isoforms, before DAMGO exposure, had no effect on opioid receptor down-regulation. In addition to expressing conventional (PKC-alpha) and novel (PKC-epsilon) isoforms, SH-SY5Y cells also contain a DAG- and Ca2+-independent, atypical PKC isozyme (PKC-zeta), which does not decrease in expression after prolonged DAMGO or phorbol ester treatment. This led us to investigate whether PKC-zeta is similarly sensitive to activation by mu-opioids. PKC-zeta translocates from the cytosol to the membrane with kinetics similar to those of PKC-alpha and epsilon in response to DAMGO but does not undergo reverse translocation after longer exposure times. Our evidence suggests that direct PKC activation by mu-opioid agonists is involved in the processes that result in mu-receptor down-regulation in human neuroblastoma cells and that conventional, novel, and atypical PKC isozymes are involved.  相似文献   

9.
10.
The nature of the signaling process activated by neuronal nicotinic receptors has not been fully defined; however, several recent studies have implicated the involvement of calcium ion fluxes in the response to nicotine on a cellular level. Alteration of nicotine-induced antinociception in mice after systemic administration was therefore investigated in the presence of several drugs that increase intracellular calcium. Calcium, (+/-)-BAYK 8644, thapsigargin, glyburide and A23187 administered intrathecally (i.t.) were found to enhance nicotine-induced antinociception by shifting its dose-response curve to the left. Conversely, i.t. administration of agents which decrease intracellular calcium, such as EGTA and alpha-calcitonin gene-related peptide, blocked nicotine-induced antinociception. These findings support a role for spinal intracellular calcium in the pharmacological effects of nicotine. Additionally, blockade of antinociception by nimodipine and nifedipine indicates that a L-type calcium channel is involved in nicotine's effect. However, nicotine did not compete for [3H] nitrendipine binding. Intrathecal administration of mecamylamine, a nicotinic antagonist, resulted in a blockade of antinociception produced by the i.t. injection of thapsigargin, A23187, calcium and (+/-)-BAYK 8644. The mechanism of mecamylamine's antagonism of nicotine is uncertain. However, these results suggest that mecamylamine blocks the effects of drugs which increase intracellular calcium by either a modulation of intracellular calcium-dependent mechanisms or a blockade of calcium channels. Thus, mecamylamine could modulate a calcium signaling process secondary to receptor activation resulting in blockade of antinociception produced by diverse agents.  相似文献   

11.
In vitro growth of 6 human melanoma-derived cell lines was inhibited markedly by the phorbol-ester tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA), a potent activator of several isoforms of protein kinase C (PKC). Utilizing PKC isoform-specific antibodies in immunoblotting experiments, we found that the PKC alpha and PKC epsilon isoforms were expressed in all of the 6 melanoma cell lines tested, whereas the PKC beta isoform was expressed at detectable levels in only 2 of the 6 cell lines. The SK-Mel-173 melanoma cell line, which had relatively high levels of PKC beta mRNA and protein expression, and which was also the most sensitive to cell growth inhibition by TPA, was used to isolate clones whose growth was less inhibited by TPA. Immunoblotting experiments revealed that in parental SK-Mel 173 cells PKC beta was rapidly down-regulated to below detectable levels after treatment for 48 hr with TPA, but that in TPA-resistant variant clones there was negligible down-regulation of PKC beta by TPA. On the other hand, treatment of parental and TPA-resistant SK-Mel 173 cells with TPA led to partial down-regulation of PKC alpha in both cell lines. Total PKC enzyme activity was also greater in TPA-resistant cells than in parental SK-Mel 173 cells. Our results show that TPA might inhibit the growth of melanoma cells by causing down-regulation of specific isoforms of PKC that are required to maintain the growth of these cells.  相似文献   

12.
The process of high-affinity IgE receptor (Fc epsilon RI)-mediated signal transduction in human basophils and mast cells is accompanied by activation of protein kinase C (PKC). The present study investigated the effects of a novel protein kinase inhibitor with in vitro selectivity for PKC (CGP 41251) in comparison with the potent but non-selective PKC inhibitor staurosporine on the activation of human peripheral basophilic leukocytes and enzymatically isolated human skin mast cells. CGP 41251 exerted strong concentration-dependent inhibitory effects on Fc epsilon RI-mediated histamine release from both cell populations. In addition, the IgE-mediated generation of arachidonic acid metabolites (leukotriene C4/D4 and prostaglandin E2) from human basophils was also significantly inhibited by this compound. Its action was not significantly different from the action of staurosporine. Direct activation of cellular PKC by the phorbol ester 12-o-tetradecanoyl-phorbol-13-acetate and subsequent histamine release from basophils was also inhibited by both compounds. CGP 41251 did not suppress N-formyl-met-leu-phe- or A23187-induced activation of basophils, whereas A23187-induced mediator release from human skin mast cells was inhibited in a concentration-dependent fashion. We conclude that an increase of in vitro selectivity for PKC does not significantly enhance inhibitory effects on immunological activation of histamine-containing cells. Moreover, nonimmunological pathways of signal transduction in basophils and mast cells appear to be mediated by distinct biochemical events.  相似文献   

13.
1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation. 2. In RAW 264.7 cells UTP (100 microM) and thapsigargin (1 microM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 microM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 microM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml(-1)) or 4-bromophenacyl bromide (100 microM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses. 3. U73122 (10 microM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise. 4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM-3 microM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 microM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release. 5. Short-term treatment with PMA (1 microM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA. 6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 microM), Ro 31-8220 (10 microM), Go 6976 (1 microM) and the down-regulation of PKC. 7. Following treatment of cells with SK&F 96365 (30 microM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated. 8. Neither PD 98059 (100 microM), MEK a inhibitor, nor genistein (100 microM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin. 9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.  相似文献   

14.
15.
Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcepsilonR1) leads to activation of phospholipase C gamma isoforms via tyrosine kinase- and phosphatidylinositol 3-kinase-dependent pathways, release of InsP3-sensitive intracellular Ca2+ stores, and a sustained phase of Ca2+ influx. These events are accompanied by a redistribution of type II InsP3 receptors within the endoplasmic reticulum and nuclear envelope, from a diffuse pattern with a few small aggregates in resting cells to large isolated clusters after antigen stimulation. Redistribution of type II InsP3 receptors is also seen after treatment of RBL-2H3 cells with ionomycin or thapsigargin. InsP3 receptor clustering occurs within 5-10 min of stimulus and persists for up to 1 h in the presence of antigen. Receptor clustering is independent of endoplasmic reticulum vesiculation, which occurs only at ionomycin concentrations >1 microM, and maximal clustering responses are dependent on the presence of extracellular calcium. InsP3 receptor aggregation may be a characteristic cellular response to Ca2+-mobilizing ligands, because similar results are seen after activation of phospholipase C-linked G-protein-coupled receptors; cholecystokinin causes type II receptor redistribution in rat pancreatoma AR4-2J cells, and carbachol causes type III receptor redistribution in muscarinic receptor-expressing hamster lung fibroblast E36(M3R) cells. Stimulation of these three cell types leads to a reduction in InsP3 receptor levels only in AR4-2J cells, indicating that receptor clustering does not correlate with receptor down-regulation. The calcium-dependent aggregation of InsP3 receptors may contribute to the previously observed changes in affinity for InsP3 in the presence of elevated Ca2+ and/or may establish discrete regions within refilled stores with varying capacity to release Ca2+ when a subsequent stimulus results in production of InsP3.  相似文献   

16.
Abnormal intracellular Ca2+ handling in hypertrophied and failing hearts is partly due to changes in Ca2+ transporter gene expression, but the mechanisms responsible for these alterations remain largely unknown. We previously showed that intrinsic mechanical load (i.e. spontaneous contractile activity) induced myocyte hypertrophy, and down-regulated SR Ca2+ ATPase (SERCA2) gene expression in cultured neonatal rat ventricular myocytes (NRVM). In the present study, we examined whether extrinsic mechanical load (i.e. cyclic stretch) also induced NRVM hypertrophy, and led to down-regulation of SERCA2 and other Ca2+ transporter genes which have been associated with cardiac hypertrophy and failure in vivo. NRVM were maintained in serum-free culture medium under control conditions, or subjected to cyclic mechanical deformation (1.0 Hz, 20% maximal strain, 48 h). Under these conditions, cyclic stretch induced NRVM hypertrophy, as evidenced by significant increases in total protein/DNA ratio, myosin heavy chain (MHC) content, and atrial natriuretic factor (ANF) secretion. Cyclic stretch also induced the MHC isoenzyme "switch" which is characteristic of hemodynamic overload of the rat heart in vivo. Cyclic stretch significantly down-regulated SERCA2 and ryanodine receptor (RyR) mRNA and protein levels, while simultaneously increasing ANF mRNA. In contrast, Na+-Ca2+ exchanger and phospholamban mRNA levels were unaffected. Load-dependent SERCA2 and RyR down-regulation was independent of Ca2+ influx via voltage-gated, L-type Ca2+ channels, as cyclic stretch down-regulated SERCA2 and RyR mRNA levels in both control and verapamil-treated NRVM. These results indicate that extrinsic mechanical load (in the absence of other exogenous stimuli) induces NRVM hypertrophy and causes down-regulation of Ca2+ transporter gene expression. This in vitro model system should prove useful to dissect the intracellular signaling pathways responsible for transducing this phenotype during cardiac hypertrophy and heart failure in vivo.  相似文献   

17.
Adrenal zona glomerulosa (ZG) cells produce aldosterone in response to angiotensin II and extracellular potassium through different mechanisms which involve changes in cytosolic free calcium (Cai). Protein kinase C (PKC) activation is part of the angiotensin II signalling cascade but its effects on Cai are unknown. PKC activation with 1 microM phorbol 12-myristate 13-acetate (PMA) and 8 mM Ko significantly increased the rate of calcium influx (P < 0.001). Both the PKC- and the Ko-induced calcium influx occurred via a nifedipine-sensitive pathway. When both were combined, PKC activation and 8 mM Ko were not additive over either agent alone. PKC activation and 8 mM Ko also stimulated calcium efflux (P < 0.01). When combined together PKC activation and 8 mM Ko had additive effects on calcium efflux (P < 0.05). PKC activation did not increase Cai nor the exchangeable calcium pool in contrast to 8 mM Ko which significantly increased both (P < 0.001). Thus, PKC activation in ZG cells induces a pattern of calcium transport characterized by accelerated calcium recycling across the cell membrane without increasing cell calcium content.  相似文献   

18.
19.
20.
Although protein kinase C (PKC) activation has been shown to inhibit Ca2+ influx in T lymphocytes, the role of PKC on Ca2+ sequestration or extrusion processes has not been fully explored. We examined the effect of CD3 stimulation and PKC activators on cytosolic Ca2+ (Ca2+i) extrusion and 45Ca2+ efflux in human leukemic Jurkat T cells. Treatment of Fura-2 loaded cells with phorbol 12-myristate 13-acetate (PMA) or thymeleatoxin (THYM) resulted in a decrease in Ca2+i both in the presence and absence of extracellular Ca2+, whereas inactive phorbol esters had no effect. PKC activators added at the peak of a Ca2+i transient induced by anti-CD3 mAb, ionomycin or thapsigargin (TG) stimulated the rate and extent of return of Ca2+i to basal levels by 17-53%. PKC stimulation of the Ca2+i decline was not enhanced by the presence of Na+, indicating that PKC activators increase Ca2+ pump activity rather than a Na+/Ca2+ exchange mechanism. As CD3 receptor activation enhanced the Ca2+i decline in TG-treated cells, antigen-mediated activation of phospholipase C (PLC) signaling includes enhanced Ca2+ extrusion at the plasma membrane. The effect of PKC activators on parameters of Ca2+i extrusion were further explored. PMA significantly increased the rate of Ca2+ extrusion in TG-treated cells from 0.28 +/- 0.02 to 0.35 +/- 0.03 s-1 (mean +/- SEM) and stimulated the initial rate of 45Ca2+ efflux by 69% compared to inactive phorbol ester treated cells. The effects of PKC activation on the Ca2+i decline were eliminated by PKC inhibitors, PKC down regulation (24 h PMA pretreatment), ATP-depletion and conditions that inhibited the Ca2+ pump. In contrast, pretreatment of cells with okadaic acid enhanced the PMA-stimulated response. We suggest that Jurkat T cells contain a PKC-sensitive Ca2+ extrusion mechanism likely to be the Ca2+ pump. In lymphocytes, receptor/PLC-linked PKC activation modulates Ca2+i not only by inhibiting Ca2+ influx but also by stimulating plasma membrane Ca2+i extrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号