首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter presents a systematic investigation of charge in HfO/sub 2/ gate stacks. Assuming that the majority of charge is associated with the stack interfaces, it is found that the charge at the HfO/sub 2//interfacial layer (IL) interface is negative while the charge at the Si/IL interface is positive. In general, the calculated charge densities at both interfaces are of order 10/sup 12/ cm/sup -2/. A forming gas anneal (FGA) reduces the interface charge greatly at both interfaces. However, the FGA temperature does not have much effect on the charge density. The effects of post deposition anneal at various temperatures and under various atmospheres are also studied. Its found that a high temperature dilute oxidizing atmosphere anneal reduces the charge at both interfaces.  相似文献   

2.
Charge in HfO/sub 2/ gate stacks grown from various metal-organic chemical vapor deposition sources has been studied using nMOS capacitors with a damage-free Cr gate process. It is found that the charge in the stack is mainly concentrated at the interfaces between materials. The effect of postdeposition anneal depends on the high-/spl kappa/ film-deposition chemistry. A forming gas anneal can reduce interface charge, hysteresis, and interface state densities for HfO/sub 2/ films grown from various sources. The marked difference in the annealing response of similar films deposited from different precursors, however, strongly suggests that charge in these stacks is related to the deposition chemistry and may be due to residual impurities or defects left in the film from the deposition.  相似文献   

3.
Electrical and material characteristics of hafnium oxynitride (HfON) gate dielectrics have been studied in comparison with HfO/sub 2/. HfON was prepared by a deposition of HfN followed by post-deposition-anneal (PDA). By secondary ion mass spectroscopy (SIMS), incorporated nitrogen in the HfON was found to pile up at the dielectric/Si interface layer. Based on the SIMS profile, the interfacial layer (IL) composition of the HfON films appeared to be like hafnium-silicon-oxynitride (HfSiON) while the IL of the HfO/sub 2/ films seemed to be hafnium-silicate (HfSiO). HfON showed an increase of 300/spl deg/C in crystallization temperature compared to HfO/sub 2/. Dielectric constants of bulk and interface layer of HfON were 21 and 14, respectively. The dielectric constant of interfacial layer in HfON (/spl sim/14) is larger than that of HfO/sub 2/ (/spl sim/7.8). HfON dielectrics exhibit /spl sim/10/spl times/ lower leakage current (J) than HfO/sub 2/ for the same EOTs before post-metal anneal (PMA), while /spl sim/40/spl times/ lower J after PMA. The improved electrical properties of HfON over HfO/sub 2/ can be explained by the thicker physical thickness of HfON for the same equivalent oxide thickness (EOT) due to its higher dielectric constant as well as a more stable interface layer. Capacitance hysteresis (/spl Delta/V) of HfON capacitor was found to be slightly larger than that of HfO/sub 2/. Without high temperature forming gas anneal, nMOSFET with HfON gate dielectric showed a peak mobility of 71 cm/sup 2//Vsec. By high temperature forming gas anneal at 600/spl deg/C, mobility improved up to 256 cm/sup 2//Vsec.  相似文献   

4.
Electron and hole mobility in HfO/sub 2//metal gate MOSFETs is deeply studied through low-temperature measurements down to 4.2 K. Original technological splits allow the decorrelation of the different scattering mechanisms. It is found that even when charge trapping is negligible, strong remote coulomb scattering (RCS) due to fixed charges or dipoles causes most of the mobility degradation. The effective charges are found to be located in the HfO/sub 2/ near the SiO/sub 2/ interface within 2 nm. Experimental results are well reproduced by RCS calculation using 7/spl times/10/sup 13/ cm/sup -2/ fixed charges at the HfO/sub 2//SiO/sub 2/ interface. We also discuss the role of remote phonon scattering in such gate stacks. Interactions with surface soft-optical phonon of HfO/sub 2/ are clearly evidenced for a metal gate but remain of second order. All these remote interactions are significant for an interfacial oxide thickness up to 2 nm, over which, these are negligible. Finally, the metal gate (TiN) itself induces a modified surface-roughness term that impacts the low to high effective field mobility even for the SiO/sub 2/ gate dielectric references.  相似文献   

5.
We have found excellent electrical characteristics of epitaxially grown SrTiO/sub 3/ by molecular beam epitaxy (MBE) for silicon metal-insulator-semiconductor (MIS) gate dielectric application. For thin SrTiO/sub 3/ film, the equivalent oxide thickness (EOT) and leakage current density was 5.4 /spl Aring/ and 7 /spl times/ 10/sup -4/ A/cm/sup 2/ (@V/sub g/ = V/sub fb/ - 1 V), respectively. In addition, the dispersion and hysteresis characteristics were negligible. As-deposited samples show relatively high fixed oxide charge density and interface state density, but both of these characteristics are substantially reduced by an optimizing low temperature (< 450 /spl deg/C) post-metal forming gas anneal (FGA).  相似文献   

6.
Time-dependent dielectric breakdown (TDDB) measurement by constant current stress has been performed to investigate the oxide (SiO/sub 2/) reliability grown on n-type 4H-SiC. At 300K, the intrinsic injected charge to breakdown (Q/sub BD/) of thermally grown SiO/sub 2/ in wet O/sub 2/ ambience is about 0.1 C/cm/sup 2/, whereas N/sub 2/O anneal after the thermal oxidation results in the drastic improvement of the reliability. The intrinsic Q/sub BD/ of N/sub 2/O annealed SiO/sub 2/ is found to be 10 C/cm/sup 2/, which is two orders of magnitude larger than that of the oxide without N/sub 2/O anneal, suggesting that the quality of SiO/sub 2/ and/or SiO/sub 2//SiC interface is improved. TDDB measurement has been also performed at high temperatures up to 423 K. The activation energy of oxide lifetime estimated from time to failure of 80% is 0.35 and 0.10 eV for the oxide with and without N/sub 2/O anneal, respectively.  相似文献   

7.
We investigate for the first time the possibility of integrating chemical vapor deposition (CVD) HfO/sub 2/ into the multiple gate dielectric system-on-a-chip (SoC) process in the range of 6-7 nm, which supports higher voltage (2.5-5 V operation/tolerance). Results show that CVD HfO/sub 2/-SiO/sub 2/ stacked gate dielectric (EOT =6.2 nm) exhibits lower leakage current than that of SiO/sub 2/ (EOT =5.7 nm) by a factor of /spl sim/10/sup 2/, with comparable interface quality (D/sub it//spl sim/1/spl times/10/sup 10/ cm/sup -2/eV/sup -1/). The presence of negative fixed charge is observed in the HfO/sub 2/-SiO/sub 2/ gate stack. In addition, the addition of HfO/sub 2/ on SiO/sub 2/ does not alter the dominant conduction mechanism of Fowler-Nordheim tunneling in the HfO/sub 2/-SiO/sub 2/ gate stack. Furthermore, the HfO/sub 2/-SiO/sub 2/ gate stack shows longer time to breakdown T/sub BD/ than SiO/sub 2/ under constant voltage stress. These results suggest that it may be feasible to use such a gate stack for higher voltage operation in SoC, provided other key requirements such as V/sub t/ stability (charge trapping under stress) can be met and the negative fixed charge eliminated.  相似文献   

8.
The low-frequency noise has been studied in nMOSFETs with an HfO/sub 2/--SiO/sub 2/ gate stack, for different thickness of the SiO/sub 2/ interfacial layer (IL). It is observed that the 1/f-like noise in linear operation, is about 50 times higher in the HfO/sub 2/ devices with a 0.8-nm chemical oxide IL, compared with the 4.5-nm thermal oxide reference n-channel transistors. This is shown to relate to the correspondingly higher trap density in the dielectric material. In addition, it is demonstrated that the noise rapidly reduces with increasing thickness of the IL. From the results for a 2.1-nm SiO/sub 2/ IL, it is derived that at a certain gate voltage range, electron tunneling to a defect band in the HfO/sub 2/ layer may contribute to a pronounced increase in the flicker noise.  相似文献   

9.
Metal-insulator-metal (MIM) capacitors with different HfO/sub 2/ thickness have been investigated. The results show that both the capacitance density and voltage coefficients of capacitance (VCCs) increase with decreasing HfO/sub 2/ thickness. In addition, it is found that the VCCs decrease logarithmically with increasing thickness. Furthermore, the MIM capacitor with 10-nm HfO/sub 2/ shows a record high capacitance density of 13 fF//spl mu/m/sup 2/ and a VCC of 607 ppm/V, which can meet the requirement of the International Technology Roadmap for Semiconductors. It can also provide a low leakage current of 5.95 /spl times/ 10/sup -8/A/cm/sup 2/ at room temperature at 1 V, low tangent values below 0.05, and a small frequency dependence. These results indicate that the devices are suitable for use in silicon integrated circuit applications.  相似文献   

10.
A stacked Y/sub 2/O/sub 3//HfO/sub 2/ multimetal gate dielectric with improved electron mobility and charge trapping characteristics is reported. Laminated hafnium and yttrium were sputtered on silicon followed by post-deposition anneal (PDA) in N/sub 2/ ambient. The new dielectric shows a similar scalability to HfO/sub 2/ reference. Analysis on flatband voltage shift indicates positive fixed charge induced by Y/sub 2/O/sub 3/. Excellent transistor characteristics have been demonstrated. Stacked Y/sub 2/O/sub 3//HfO/sub 2/, compared to HfO/sub 2/ reference with similar equivalent oxide thickness (EOT), shows 49% enhancement in transconductance and 65% increase in the peak electron mobility. These improvements may be attributed to better charge trapping characteristics of the multimetal dielectric.  相似文献   

11.
In this letter, the authors fabricate the silicon-oxide-nitride-oxide-silicon (SONOS)-like memory using an HfO/sub 2/ as charge trapping layer deposited by a very simple sol-gel spin-coating method and 900 /spl deg/C 1-min rapid thermal annealing. They examine the quality of sol-gel HfO/sub 2/ charge trapping layer by X-ray photoemission spectroscopy, Id-Vg, charge retention, and endurance. The threshold voltage shift is 1.2 V for the sol-gel HfO/sub 2/ trapping layer. The sol-gel HfO/sub 2/ film can form a deep trap layer to trap electrons for the SONOS-like memory. Therefore, the sol-gel device exhibits the long charge retention time and good endurance performance. The charge retention time is 10/sup 4/ s with only 6% charge loss and long endurance program/erase cycles up to 10/sup 5/.  相似文献   

12.
We fabricated a nonvolatile Flash memory device using Ge nanocrystals (NCs) floating-gate (FG)-embedded in HfAlO high-/spl kappa/ tunneling/control oxides. Process compatibility and memory operation of the device were investigated. Results show that Ge-NC have good thermal stability in the HfAlO matrix as indicated by the negative Gibbs free energy changes for both reactions of GeO/sub 2/+Hf/spl rarr/HfO/sub 2/+Ge and 3GeO/sub 2/+4Al/spl rarr/2Al/sub 2/O/sub 3/+3Ge. This stability implies that the fabricated structure can be compatible with the standard CMOS process with the ability to sustain source-drain activation anneal temperatures. Compared with Si-NC embedded in HfO/sub 2/, Ge-NC embedded in HfAlO can provide more electron traps, thereby enlarging the memory window. It is also shown that this structure can achieve a low programming voltage of 6-7 V for fast programming, a long charge retention time of ten years maintaining a 0.7-V memory window, and good endurance characteristics of up to 10/sup 6/ rewrite cycles. This paper shows that the Ge-NC embedded in HfAlO is a promising candidate for further scaling of FG Flash memory devices.  相似文献   

13.
TaN metal-gate nMOSFETs using HfTaO gate dielectrics have been investigated for the first time. Compared to pure HfO/sub 2/, a reduction of one order of magnitude in interface state density (D/sub it/) was observed in HfTaO film. This may be attributed to a high atomic percentage of Si-O bonds in the interfacial layer between HfTaO and Si. It also suggests a chemical similarity of the HfTaO-Si interface to the high-quality SiO/sub 2/-Si interface. In addition, a charge trapping-induced threshold voltage (V/sub th/) shift in HfTaO film with constant voltage stress was 20 times lower than that of HfO/sub 2/. This indicates that the HfTaO film has fewer charged traps compared to HfO/sub 2/ film. The electron mobility in nMOSFETs with HfO/sub 2/ gate dielectric was significantly enhanced by incorporating Ta.  相似文献   

14.
In this paper, silicon (Si) nanocrystal memory using chemical vapor deposition (CVD) HfO/sub 2/ high-k dielectrics to replace the traditional SiO/sub 2/ tunneling/control dielectrics has been fabricated and characterized for the first time. The advantages of this approach for improved nanocrystal memory operation have also been studied theoretically. Results show that due to its unique band asymmetry in programming and retention mode, the use of high-k dielectric on Si offers lower electron barrier height at dielectric/Si interface and larger physical thickness, resulting in a much higher J/sub g,programming//J/sub g,retention/ ratio than that in SiO/sub 2/ and therefore faster programming and longer retention. The fabricated device with CVD HfO/sub 2/ shows excellent programming efficiency and data-retention characteristics, thanks to the combination of a lower electron barrier height and a larger physical thickness of HfO/sub 2/ as compared with SiO/sub 2/ of the same electrical oxide thickness (EOT). It also shows clear single-electron charging effect at room temperature and superior data endurance up to 10/sup 6/ write/erase cycles.  相似文献   

15.
A structural approach of fabricating laminated Dy/sub 2/O/sub 3/-incorporated HfO/sub 2/ multimetal oxide dielectric has been developed for high-performance CMOS applications. Top Dy/sub 2/O/sub 3/ laminated HfO/sub 2/ bilayer structure shows the thinnest equivalent oxide thickness (EOT) with a reduced leakage current compared to HfO/sub 2/. This structure shows a great advantage for the EOT scaling CMOS technology. Excellent electrical performances of the Dy/sub 2/O/sub 3//HfO/sub 2/ multimetal stack oxide n-MOSFET such as lower V/sub T/, higher drive current, and an improved channel electron mobility are reported. Dy/sub 2/O/sub 3//HfO/sub 2/ sample also shows a better immunity for V/sub t/ instability and less severe charge trapping characteristics. Two different rationed Dy/sub 2/O/sub 3//HfO/sub 2/ and HfO/sub 2/ n-MOSFET were measured by charge-pumping technique to obtain the interface state density (D/sub it/), which indicates a reasonable and similar interface quality. Electron channel mobility is analyzed by decomposing into three regimes according to the effective field. Reduced phonon scattering is found to be the plausible mechanism for higher channel mobility.  相似文献   

16.
Bias-temperature instabilities (BTI) of HfO/sub 2/ metal oxide semiconductor field effect transistors (MOSFETs) have been systematically studied for the first time. NMOS positive BTI (PBTI) exhibited a more significant V/sub t/ instability than that of PMOS negative BTI (NBTI), and limited the lifetime of HfO/sub 2/ MOSFETs. Although high-temperature forming gas annealing (HT-FGA) improved the interface quality by passivating the interfacial states with hydrogen, BTI behaviors were not strongly affected by the technique. Charge pumping measurements were extensively used to investigate the nature of the BTI degradation, and it was found that V/sub t/ degradation of NMOS PBTI was primarily caused by charge trapping in bulk HfO/sub 2/ rather than interfacial degradation. Deuterium (D/sub 2/) annealing was found to be an excellent technique to improve BTI immunity as well as to enhance the mobility of HfO/sub 2/ MOSFETs.  相似文献   

17.
The ultrathin HfO/sub 2/ gate dielectric (EOT<0.7 nm) has been achieved by using a novel "oxygen-scavenging effect" technique without incorporation of nitrogen or other "dopants" such as Al, Ti, or La. Interfacial oxidation growth was suppressed by Hf scavenging layer on HfO/sub 2/ gate dielectric with appropriate annealing, leading to thinner EOT. As the scavenging layer thickness increases, EOT becomes thinner. This scavenging technique produced a EOT of 7.1 /spl Aring/, the thinnest EOT value reported to date for "undoped" HfO/sub 2/ with acceptable leakage current, while EOT of 12.5 /spl Aring/ was obtained for the control HfO/sub 2/ film with the same physical thickness after 450/spl deg/C anneal for 30 min at forming gas ambient. This reduced EOT is attributed to "scavenging effect" that Hf metal layer consumes oxygen during anneal and suppresses interfacial reaction effectively, making thinner interface layer. Using this fabrication approach, EOT of /spl sim/ 0.9 nm after conventional self-aligned MOSFETs process was successfully obtained.  相似文献   

18.
We have studied ultrathin Al/sub 2/O/sub 3/ and HfO/sub 2/ gate dielectrics on Ge grown by ultrahigh vacuum-reactive atomic-beam deposition and ultraviolet ozone oxidation. Al/sub 2/O/sub 3/-Ge gate stack had a t/sub eq//spl sim/23 /spl Aring/, and three orders of magnitude lower leakage current compared to SiO/sub 2/. HfO/sub 2/-Ge allowed even greater scaling, achieving t/sub eq//spl sim/11 /spl Aring/ and six orders of magnitude lower leakage current compared to SiO/sub 2/. We have carried out a detailed study of cleaning conditions for the Ge wafer, dielectric deposition condition, and anneal conditions and their effect on the electrical properties of metal-gated dielectric-Ge capacitors. We show that surface nitridation is important in reducing hysteresis, interfacial layer formation and leakage current. However, surface nitridation also introduces positive trapped charges and/or dipoles at the interface, resulting in significant flatband voltage shifts, which are mitigated by post-deposition anneals.  相似文献   

19.
20.
In this letter, we studied the effects of post-deposition anneal (PDA) time and Si interface control layer (ICL) on the electrical characteristics of the MOS capacitor with high-/spl kappa/ (HfO/sub 2/) material on GaAs. Thin equivalent oxide thickness (EOT<3 nm) with excellent capacitance-voltage (C-V) characteristics has been obtained. The thickness of the Si ICL and PDA time were correlated with C-V characteristics. It was found that high temperature Si ICL deposition and longer PDA time at 600/spl deg/C improved the C-V shape, leakage current, and especially frequency dispersion (<5%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号