首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this letter, a novel microstrip parallel-coupled line structure with two asymmetric loading stubs is proposed for notched band implementation in ultra-wideband (UWB) bandpass filter (BPF). The rejection band is introduced by adding asymmetric loading stubs to the two outer arms of three parallel-coupled lines. The lengths and the widths of the stubs can control the bandwidth of the notched filter and can set the notched band at a desired frequency. This structure has been applied to a single-stage UWB BPF in order to produce a narrow notched band inside its passband. The design is successfully realized in theory and verified by full-wave electromagnetic simulation and the experiment.  相似文献   

2.
This letter presents a novel ultra-wideband (UWB) microstrip bandpass filter on a microstrip line with improved out-of-band performances. A multiple-mode resonator (MMR) is first constituted to equally allocate its first three resonant frequencies in the 3.1–10.6-GHz UWB band. Two capacitive-ended interdigital coupled lines are then formed to assign their transmission zero towards the fourth-order resonant frequency of this MMR, thereby suppressing the first spurious passband. Moreover, two outer arms in the interdigital lines are properly tapered to compensate the phase imbalance or group delay near the UWB upper-end relying on extra capacitive-ended stubs. And finally, two UWB filters with one- and two-MMRs are designed and implemented to experimentally demonstrate the improved out-of-band performances, i.e., widened/deepened upper-stopband and sharpened rejection skirts outside the UWB passband.  相似文献   

3.
Compact UWB Bandpass Filter Using Stub-Loaded Multiple-Mode Resonator   总被引:1,自引:0,他引:1  
A compact microstrip-line ultra-wideband (UWB) bandpass filter (BPF) using the proposed stub-loaded multiple-mode resonator (MMR) is presented. This MMR is formed by loading three open-ended stubs in shunt to a simple stepped-impedance resonator in center and two symmetrical locations, respectively. By properly adjusting the lengths of these stubs, the first four resonant modes of this MMR can be evenly allocated within the 3.1-to-10.6 GHz UWB band while the fifth resonant frequency is raised above 15.0GHz. It results in the formulation of a novel UWB BPF with compact-size and widened upper-stopband by incorporating this MMR with two interdigital parallel-coupled feed lines. Simulated and measured results are found in good agreement with each other, showing improved UWB bandpass behaviors with the insertion loss lower than 0.8dB, return loss higher than 14.3dB, and maximum group delay variation less than 0.64ns in the realized UWB passband  相似文献   

4.
Novel ultra-wideband (UWB) bandpass filters are proposed based on quasi-lumped-element prototypes and implemented with multilayer liquid-crystal-polymer (LCP) technology. In this study, the broadside-coupled microstrip radial stubs and high-impedance microstrip lines are adopted as quasi-lumped elements for realizing compact UWB bandpass filters. By introducing a short-circuited high-impedance microstrip line as a shunt inductor and suitably designing quasi-lumped-element capacitors, a compact six-pole bandpass filter is implemented with the Federal Communications Commission (FCC) defined UWB specifications. To further improve the selectivity and wideband performance, an eight-pole filter of this type is developed by adding two shunt short-circuited microstrip stubs, which introduce a transmission zero at the upper passband edge. The proposed filters are fabricated using multilayer LCP technology. Good agreement between simulated and measured results of these filters are observed. The measured results show that the fabricated six-pole filter has good specifications for the FCC-defined UWB system. The fabricated eight-pole filter has an ultra-wide fractional bandwidth (139%) and a good stopband rejection level, which is higher than 38.1 dB from 10.57 to 18.0 GHz. The proposed filters are attractive for UWB communications and radar systems.   相似文献   

5.
A compact ultra-wideband (UWB) bandpass filter (BPF) with notched band has been proposed and implemented in this letter. H-shaped slot is studied and adopted to tighten the coupling of inter-digital capacitor in order to improve the BPF's performance. Three pairs of tapered defected ground structures (DGS) are formed to assign their transmission zeros towards the out of band signal, thereby suppressing the spurious passband. Combining these two structures we obtain a small sized UWB BPF. Meander line slot is developed to reject the undesired wireless local-area network (WLAN) radio signals. An experimental UWB filter with notched band was fabricated with 35% less length as compared to an embedded open-circuited stub. The measured BPF insertion loss is less than 1.0 dB throughout the pass band of 2.8 to 10.8 GHz, the variation of group delay less than 0.20 ns in this band except for the notched band, and a wide stopband bandwidth with 20 dB attenuation up to at least 20.0 GHz.  相似文献   

6.
An ultra-wideband (UWB) bandpass filter on microstrip line with notch-band, compact-size and improved upper-stopband performances is presented and implemented. A modified non-uniform resonator is at first formed by transversely attaching three pairs of impedance-stepped stubs. Its resonance behavior is thoroughly characterized so as to allocate the first three resonant frequencies within 3.1-10.6 GHz band while suppressing spurious harmonics in the upper-band. As this resonator is linked at two sides with two feed lines via interdigital coupled lines with enhanced coupling degree, a preferred UWB passband is realized. Then, one of two arms in the coupled-line sections is largely extended and folded, aiming to create a notch band at the frequency of 5.6 GHz by virtue of out-of-phase transmission cancellation. Two filter prototypes are optimized and fabricated to demonstrate the notch-band-included and upper-stopband-improved UWB bandpass performances.  相似文献   

7.
In this letter, we present a compact ultra-wideband bandpass filter (BPF) with a notch band in the BPF performance by using an embedded open-circuited stub structure. The filter mainly consists of conventional stepped impedance resonator (SIR) as the multiple-mode resonator and two enhanced coupled input/output lines. The bandwidth can be analyzed by using the image-parameter method to obtain the proper dimension of the coupled lines and verified by using electromagnetic (EM) simulation. The embedded open-circuited stub structure in the SIR is used to produce a narrow notched band at 5.8 GHz, which its frequency position and bandwidth can be tuned by its physical parameters. The measured 3 dB fractional bandwidth of 113.8% and narrow notched band with 25 dB rejection is achieved. Good agreement between the EM simulation and measurement is obtained.   相似文献   

8.
In this letter, a novel ultra-wideband (UWB) bandpass filter with compact size and improved upper-stopband performance has been studied and implemented using multiple-mode resonator (MMR). The MMR is formed by attaching three pairs of circular impedance-stepped stubs in shunt to a high impedance microstrip line. By simply adjusting the radius of the circles of the stubs, the resonant modes of the MMR can be roughly allocated within the 3.1-10.6 GHz UWB band while suppressing the spurious harmonics in the upper-stopband. In order to enhance the coupling degree, two interdigital coupled-lines are used in the input and output sides. Thus, a predicted UWB passband is realized. Meanwhile, the insertion loss is higher than 30.0 dB in the upper-stopband from 12.1 to 27.8 GHz. Finally, the filter is successfully designed and fabricated. The EM-simulated and the measured results are presented in this work where excellent agreement between them is obtained.  相似文献   

9.
设计了一种梳状微带平行耦合线窄带带通滤波器,仅应用两腔结构就实现了带外5个传输零点.通过微带线开路枝节,平行耦合线结构,以及馈电位置和两个梳状线谐振器之间的耦合,在通带附近引入了3个传输零点;四分之一波长平行耦合线接地短路结构,在带外高频产生额外两个传输零点,进而可有效抑制零点频率附近的杂波干扰.实测结果表明,设计的滤...  相似文献   

10.
为滤除窄带信号对超宽带通信系统的干扰,研究并设计了一种具有五个陷波特性的超宽带天线。采用微带线馈电,在辐射贴片上刻蚀一个椭圆形开环谐振器,并在馈线旁制作了四个不同尺寸的U 形寄生短截线,以实现天线的陷波特性,天线尺寸为30 mm×40 mm×0.8 mm。仿真实验验证了天线工作频率范围为2.8~12 GHz;有效滤除了WiMAX 波段(2.94~3.42 GHz)、INSAT 波段(4.42~4.53 GHz)、WLAN 波段(5.32~5.5 GHz)、X 波段上行频(7.01~7.27 GHz)和X 波段下行频(7.57~8.05 GHz)。实测数据表明,天线的工作频段、方向性、增益及五个陷波特性等性能指标良好。  相似文献   

11.
王章静 《压电与声光》2013,35(2):276-278
提出一种应用于超宽带通信且结构紧凑的平面微带带通滤波器,通带范围为3.1~10.6 GHz,带内插损小于1 dB,群延时为0.2~0.6 ns,高于10 dB的带外抑制.超宽带的带宽通过在耦合微带线正下方底面加载缺陷地结构(DGS)实现;分别在耦合线上加载折叠的阶跃阻抗枝节和DGS上附加2条槽线,在通带的低频和高频边沿产生2个传输零点,以获得较好的频带选择性与良好的带外抑制.在实验误差允许下,仿真和测量结果较一致.  相似文献   

12.
This paper presents a new Ultra-WideBand (UWB) BandPass Filter (BPF) using half-wavelength (??/2) Stepped-Impedance Stub-Loaded Resonator (SISLR). Analytical equations derived by the even-odd mode analysis show the new filter has two tunable transmission zeros at both sides of the passband to provide a sharp rejection and seven transmission poles inside the passband to achieve U.S. UWB performance. For verification, a UWB BPF is designed, fabricated and measured. The measured results show that the fabricated filter has a -3 dB fractional bandwidth from 3.0 GHz to 10.9 GHz and its insertion loss less than 0.9 dB over the whole passband. Furthermore, the new filter exhibits a simple topology, sharp rejection, and deep stopband suppression.  相似文献   

13.
A novel, compact, and highly selective ultra-wideband bandpass filter was developed on a microstrip line and presented in this letter for use in wireless communication applications. The basic filter is composed of five short-circuited stubs separated by nonredundant connecting lines that contribute to the filter selectivity as well. In addition, a cross-coupling between the feed lines (input and output) was introduced which generated new pairs of attenuation poles at each side of the passband. As a result, the filter exhibited extremely sharp rejection skirts around the target passband without the need for increasing the number of transmission line sections. The filter was successfully designed, simulated, and fabricated. The theoretical, EM-simulated, and experimental performance is presented in this work where excellent agreement between them was obtained  相似文献   

14.
Uniplanar compact wideband bandstop filter   总被引:1,自引:0,他引:1  
A uniplanar wideband bandstop filter is proposed using two bent open-end stubs. The proposed filter consists of the bent connecting line of /spl lambda//sub g//2 between two bent /spl lambda//sub g//4 stubs, which results in wideband design with a rejection bandwidth of 90% at 2.05 GHz. Further, the connecting line and stubs have the same characteristic impedance. The proposed filter compared to the conventional one is also more compact. The area of the novel filter is (/spl lambda//sub g//4)/sup 2/ at the center frequency of the stopband, while the area of the filter realized using the nonbent stubs and connecting line is 2(/spl lambda//sub g//4)/sup 2/ for the same stopband characteristics.  相似文献   

15.
The research paper proposes a compact dual notched band ultra-wideband (UWB) bandpass filter (BPF). The basic architecture of the filter is developed using the hybrid microstrip-to-coplanar waveguide (CPW) technology, wherein a short circuited CPW in ground is coupled vertically via the dielectric to the microstrip lines on the top plane. The broadside alignment generates a three pole BPF with dual transmission zeros (TZs) on either passband/stopband edges which leads to minimum insertion loss passband and sharp roll-offs. Later, multiple spirals and split ring resonators (SRRs) are embedded in the CPW of the UWB filter to introduce the dual notches and widen the stopband respectively. The proposed filter is fabricated to justify its measured response. The proposed filter measures only 14.6 × 7.3 mm2.  相似文献   

16.
A configuration of wideband bandpass filter (BPF) with multiple notched bands is presented. Proposed BPF is based on stepped-impedance resonator. By utilising dual stepped-impedance resonators in folded topology a rectangular-ring resonator is formed. Two notched bands in the passband are achieved without using asymmetrical coupled lines. In other words, the filter configuration is capable of producing notched bands. It should be noted that additional information on filter performance and design is presented. Measurement results are presented to approve propounded filter characteristics. The measured passband of the second proposed filter is from 3.68 to 10.2 GHz with insertion loss of –1.76 dB in the first passband at the centre frequency of 4.45 GHz. The measured notched band frequencies are about 5.45 and 7.95 GHz with rejection of –21.77 and –20.82 dB, respectively. The return loss in the passband is better than –11.4 dB.  相似文献   

17.
A compact superconducting ultra-wideband filter with a passband from 125 to 260 MHz is demonstrated. The filter consists of ten shunt short-circuited stubs separated by connecting lines. The short-circuited stubs are grounded via a grounding strip that is attached to the box wall by a number of SiAl bonding wires. The filter is realized on two 2 in YBCO/LaAlO3 substrates, which are connected by two bonding wires. The measured results demonstrate an insertion loss of less than 0.08 dB and a return loss of better than 21 dB without tuning. Furthermore, the experimental results of the filter are in good agreement with the simulated ones.  相似文献   

18.
A quadruple-mode ultra-wideband (UWB) bandpass filter with sharp out-of-band rejection is presented in this work. As a starting part of designing a quadruple-mode filter, a mode graph of the initial triple-mode resonator is studied to choose its proper dimensions. Based on these pre-determined dimensions of this triple-mode resonator, two short-circuited stubs are introduced in this resonator to generate two transmission zeros near the lower and upper cut-off frequencies, leading to a higher rejection skirt outside the desired passband. Moreover, as these two stubs are installed, the fourth resonant mode falls down and works together with the first three resonant modes to form a novel quadruple-mode UWB filter. Finally, a filter prototype is designed and fabricated to experimentally validate the attractive in-band and out-of-band performances as predicted in theory.   相似文献   

19.
This paper describes micromachined, membrane-supported low-pass and bandpass filters which are suitable for microwave and millimeter-wave (MM-wave) application. The designs are realized in coplanar-waveguide (CPW) form using short- and open-end series stubs with integrated metal-insulator-metal (MIM) capacitors, and are compact in lateral and longitudinal dimensions. A computationally efficient analysis has been developed for the design and characterization of the filters. The technique is based on a quasi-static coupled-line (CL) treatment of the series stubs, and uses normal mode impedance parameters, which are calculated with the spectral-domain approach (SDA). Due to the broad TEM-bandwidth of the membrane-supported transmission lines, the method can accurately predict filter responses well into the rejection band. To demonstrate the above claims, the measured and simulated S-parameters of a 0.3 mm ×2.2 mm low-pass filter with a cutoff frequency at 17 GHz, and a second passband at 115 GHz, are presented. The new approach is also used in the design of bandpass filters which exhibit 1.5-2-dB insertion loss and bandwidths around 10%  相似文献   

20.
提出了一种基于阶梯阻抗谐振器(Step Impedance Resonator,SIR)结构的具有平行耦合微带线的超宽带(Ultra-wideband,UWB)带通滤波器。滤波器采用孔径补偿技术设计,在地面上蚀刻两个矩形槽,以增强顶层微带线之间的耦合。为了优化S参数并改善带外的抑制,在谐振器中采用了缺陷微带结构(Defective Microstrip Structure,DMS)。仿真结果表明,滤波器的通带范围为2.3~6.1 GHz,中心频率为4.2 GHz,分数带宽(Fractional Bandwidth,FBW)大于90.4%;插入和回波损耗分别优于-1 dB和-10 dB;通带中群延迟的变化范围为0.4~0.6 ns,滤波器的线性度良好。该滤波器可用于5G通信系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号