首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
测定了不同应力和温度下Ag颗粒增强复合钎料及基体钎料63Sn37Pb钎焊接头蠕变寿命,分析了Ag颗粒增强复合钎料及基体钎料钎焊接头蠕变断裂机理.表明:Ag颗粒增强复合钎料钎焊接头蠕变寿命优于基体钎料;Ag颗粒表面Ag-Sn金属间化合物形成及Ag颗粒对富Pb层阻碍作用是复合钎料钎焊接头蠕变性能提高的主要因素;钎焊接头Cu基板上一薄层富Pb相区形成是蠕变裂纹主要原因.  相似文献   

2.
应力对Ag颗粒增强SnCu基复合钎料蠕变性能的影响   总被引:2,自引:0,他引:2  
使用搭接面积为1mm2的单搭接钎焊接头,研究了恒定温度下应力对Ag颗粒增强SnCu基复合钎料钎焊接头蠕变寿命的影响,结果表明:Ag颗粒增强SnCu基复合钎料的蠕变抗力优于99.3Sn0.7Cu基体钎料;随着应力的增大,复合钎料及其基体钎料钎焊接头的蠕变寿命均呈下降趋势,且应力对复合钎料钎焊接头蠕变寿命的影响比基体钎料明显.  相似文献   

3.
Ag颗粒含量对SnCu基复合钎料性能的影响   总被引:2,自引:0,他引:2  
利用颗粒增强原理研制了新型Ag颗粒增强SnCu基复合钎料,研究了Ag颗粒不同含量对复合钎料性能影响.结果表明:当Ag含量(体积分数)为5%时,复合钎料铺展面积最大,润湿角最小,钎焊接头蠕变寿命最长,比基体钎料提高23倍.  相似文献   

4.
新型纳米结构颗粒增强无铅复合钎料性能   总被引:3,自引:0,他引:3       下载免费PDF全文
为了解决传统复合钎料制备中强化颗粒容易粗化的问题,提高无铅复合钎料的性能,选用共晶Sn-3.5Ag、Sn-3.0Ag-0.5Cu钎料作为基体,3种不同类型具有纳米结构的有机-无机笼型硅氧烷齐聚物(POSS) 颗粒作为增强相而制成复合钎料。研究了复合钎料的铺展性能、钎焊接头的力学性能和抗蠕变性能。结果表明,复合钎料的润湿性能均优于基体钎料的润湿性能,复合钎料钎焊接头的剪切强度和蠕变断裂寿命均明显提高。在相同条件下,Sn-Ag-Cu基复合钎料钎焊接头的性能优于Sn-Ag基复合钎料钎焊接头。   相似文献   

5.
纳米结构强化无铅焊点的力学性能   总被引:2,自引:0,他引:2  
新型的无铅钎料不仅要具备含铅钎料的工艺性能,更重要的是要有更高的力学性能,特别是焊接接头的抗蠕变能力。将纳米级多面齐聚倍半硅氧烷(Polyhedral oligomeric silsesquioxanes,POSS)颗粒作为增强相添加到基体钎料中,能够有效地改善Sn-3. 5Ag基复合钎料的性能。研究了不同种类POSS增强颗粒对Sn-3. 5Ag钎料显微组织和力学性能的影响,确定出POSS增强颗粒复合钎料的最佳配比,并对最佳配比复合钎料在不同温度不同载荷条件下的蠕变寿命进行了研究。结果表明:POSS颗粒质量分数小于2%时,可以抑制基板界面处初晶金属间化合物的生长;复合钎料的抗剪切强度明显提高;低温时,最大蠕变寿命明显改善。  相似文献   

6.
研究了等温时效对Sn-3.5Ag共晶钎料及其复合钎料的力学性能和显微组织变化的影响。为了弥补传统复合钎料制备和服役中强化颗粒容易粗化的问题, 制备了不同种类最佳配比的具有纳米结构的有机无机笼型硅氧烷齐聚物(POSS)颗粒增强的Sn-Ag基复合钎料。对钎焊接头在不同温度(125、150、175℃)下进行时效,通过SEM和EDAX分析了钎料与基板间金属间化合物层(IMC)的生长情况。结果表明, 经过不同温度时效,复合钎料钎焊接头界面处金属间化合物的生长速率比Sn3.5Ag共晶钎料慢, 复合钎料的IMC生长的激活能分别为80、97和77kJ/mol,均高于Sn3.5Ag共晶钎料。经过150℃时效1000h后,复合钎料钎焊接头的剪切强度分别下降了22%、13%和18%,下降幅度相当或明显小于Sn-3.5Ag钎料钎焊接头。   相似文献   

7.
通过瞬时液相(TLP)连接的互连工艺,采用Sn4.7Ag1.7Cu+Ag复合钎料,制备Sn4.7Ag1.7Cu+Ag复合钎料/Cu接头.采用SEM观察恒温时效过程中接头的组织,结合EDS对比不同工艺下试样接头组织,并对接头性能进行对比分析.结果表明:随着Ag颗粒含量的增加,Sn4.7Ag1.7Cu+Ag/Cu接头耐高温(300℃)服役性能随之提高;Ag含量为25%(质量分数)时接头在高于基体钎料熔点(217℃)83℃下服役15天未断裂,且抗拉强度为25.74 MPa,达到了低温焊接、高温服役的目的;与Sn4.7Ag1.7Cu/Cu接头相比,随着时效的进行,Sn4.7Ag1.7Cu+Ag复合钎料/Cu接头焊缝组织中残余的Ag颗粒不断溶解,并在接头界面附近产生大量Ag3 Sn化合物,而大量的块状Ag3 Sn化合物可以有效抑制焊缝中Sn元素向Cu基板扩散,达到抑制Cu3 Sn层生长的目的;在200℃服役温度条件下,随着时效的进行,Sn4.7Ag1.7Cu+Ag复合钎料/Cu接头力学性能先下降后上升,然后再下降并趋于稳定,且力学性能稳定性比Sn4.7Ag1.7Cu/Cu接头要好.  相似文献   

8.
采用Sn3.0Ag0.5Cu3.0Bi软钎料对镀镍后的两种不同体积比SiC_p/6063Al复合材料进行真空钎焊。通过SEM、剪切试验等方法分析了化学镀镍后SiC_p/6063Al复合材料真空钎焊接头的显微组织以及保温时间对接头性能的影响。结果表明:两种不同体积比SiC_p/6063Al复合材料真空钎焊后的焊缝组织致密,钎料对镀镍复合材料的润湿性良好;在270℃、保温35min的钎焊工艺下,钎焊接头的剪切强度最大值为38.3 MPa;钎料中的Sn、Cu元素能够与复合材料表面的Ni层发生化学反应,实现钎料与母材的冶金结合;镀镍后SiC_p/6063Al复合材料真空钎焊接头断裂形式为韧性断裂为主的混合断裂,断裂主要发生在钎料内部,部分发生在镀镍层与钎料的结合处。  相似文献   

9.
结合磁脉冲成形、半固态成形以及钎焊的复合优势,采用磁脉冲辅助半固态钎焊的方法来实现Cu/Al异质金属管件的连接.基于LS-DYNA对钎焊过程进行了多物理场耦合仿真,分析了钎料厚度对流变行为的影响,提出了综合考虑氧化膜去除效果及钎料流失缺陷的壁厚设计思路.利用附加能谱仪的电子探针显微分析仪和电子万能材料试验机研究了半固态Zn-15Al-1.0Si钎料的厚度对钎焊接头质量的影响.结果 表明:在钎焊过程中,半固态钎料所受压、剪应力复合作用随着其厚度的增加而变弱,且在搭接区域中部最弱.钎料过厚,其与母材两侧难以形成良好的冶金结合,而钎料过薄,会导致接头钎料缺失的缺陷.在合适的放电参数条件下,当钎料固相率为0.6,厚度为300 μm时,能获得以球晶组织为主的磁脉冲辅助半固态钎焊Cu/Al管接头.  相似文献   

10.
万永强  胡小武  徐涛  李玉龙  江雄心 《材料导报》2018,32(12):2003-2007, 2014
本工作借助扫描电镜(SEM)等手段,针对Cu/Sn37Pb/Cu钎焊接头进行剪切断裂实验,考察并分析钎焊及等温时效处理后焊点接头金属间化合物(IMC)的生长情况以及搭接焊点的剪切强度和断裂模式,旨在深入研究高体积分数界面IMC层对钎焊接头剪切性能及断裂形貌的影响。实验结果表明:在时效处理过程中,界面Cu3Sn层逐渐增厚且逐渐变得平坦。此外,在Cu3Sn/Cu界面观察到柯肯达尔空洞现象,随着时效时间的延长,空洞数量增多且尺寸变大。随着界面IMC层厚度增加,接头的剪切强度先增加后下降,这可能是由于脆性IMC厚度过大或粗化的富Pb相和富Sn相增多引起的。当时效时间与钎焊时间较短时,焊点具有较高体积分数的本体焊料,焊点断裂模式为韧性断裂,随着时效时间或钎焊时间的延长,焊点内IMC体积分数逐渐升高,焊点断裂模式开始转变为韧脆混合断裂,最后转变为脆性断裂。  相似文献   

11.
Creep property of composite solders reinforced by nano-sized particles   总被引:1,自引:0,他引:1  
In the present work the creep properties of Sn37Pb and Sn0.7Cu based composite solders with nano-sized metallic Cu, Ag and nano-sized oxide Al2O3, TiO2 reinforcement particles have been studied. First, a series of volume percentages of reinforcements were selected for optimizing the content of particles. Then, the composite solder with optimum volume fraction of the reinforcement particles, corresponding to maximum creep rupture life, is selected for investigating the effect of applied stress level and test temperature on creep rupture life of the composite solder joints. In the creep rupture life test, small single-lap tensile-shear joints were adopted. The results indicate that all the composite solders have improved creep resistance, comparing to the eutectic Sn37Pb solder and the Sn0.7Cu lead-free solder. The creep rupture life of the composite solder joints is first increased with the increase in the volume fraction of reinforcement in the composite solders. Then, the creep rupture life is decreased, as the reinforcement content exceeds a certain value. The creep rupture life of the solder joints is decreased with the increase of applied stress and testing temperature. Moreover, the reinforced efficiency of nano-sized Ag particles is the best in all the tested nano-sized reinforcements for the Sn37Pb based and Sn0.7Cu based composite solders, when the particles contents are in their own optimum content.  相似文献   

12.
In the present work, the creep strain of solder joints is measured using a stepped load creep test on a single specimen. Based on the experimental results, the constitutive model on the steady-state creep strain is established by applying a linear curve fitting for the nano-sized Ag particle-reinforced Sn37Pb based composite solder joint and the Sn37Pb solder joint, respectively. It is indicated that the activation energy of the Ag particle-reinforced Sn37Pb based composite solder joints is higher than that of Sn37Pb solder joints. It is expected that the creep resistance of the Ag particle-reinforced Sn37Pb based composite solder joints is superior to that of Sn37Pb solder.  相似文献   

13.
In recent years, the pollution of environment from lead (Pb) and Pb-containing compounds in microelectronic devices attracts more and more attentions in academia and industry, the lead-free solder alloys begin to replace the lead-based solders in packaging process of some devices and components. In this work, microstructures and mechanical properties of the lead-free solder alloy Sn99.3Cu0.7(Ni) are investigated. This paper will compare the mechanical properties of the lead-based with lead-free solder alloys (Sn99.3Cu0.7(Ni) and 63Sn37Pb). The tensile tests of lead-based and lead-free solder alloys (Sn99.3Cu0.7(Ni) and Sn63Pb37) were conducted at room and elevated temperature at constant strain rate; the relevant tensile properties of Sn99.3Cu0.7(Ni) and Sn63Pb37 were obtained. Specifically, the tensile strength of this lead-free solder- Sn99.3Cu0.7(Ni) in 25C, 50C, 75C, 100C, 125C was investigated; and it was found that tensile strength of the lead-free solder decreased with the increasing test temperature at constant strain rate, showing strong temperature dependence. The lead-free solder alloy Sn99.3Cu0.7(Ni) was found to have favorable mechanical properties and it may be able to replace the lead-based solder alloy such as Sn63Pb37 in the packaging processes in microelectronic industry.  相似文献   

14.
Charpy impact specimens of eutectic Sn37Pb and Sn3.8Ag0.7Cu solder joints with U-type notch were prepared to investigate the joint impact strength. The gap sizes of the butt joint were selected at 0.3 and 0.8 mm. Compared with the values of 0.3 mm joint gap, the impact absorbed energies of two solder joints were increased at the joint gap of 0.8 mm. The impact strengths of Sn37Pb joints were higher than those of Sn3.8Ag0.7Cu joints in both cases. From the macrographic observation of the fracture path, when the gap was 0.3 mm, the crack initiation of two solder joints located at the root of U-type notch then propagated along one interface of the joint. For the Sn37Pb joints, the fracture path was not changed at 0.8 mm gap size. However, the fracture path of Sn3.8Ag0.7Cu joint was totally changed and the fracture occurred not at the root of pre-U notch but from one side of the solder/Cu interfaces. From the micrographic observation, the crack of the Sn37Pb joints was concentrated on the Pb-rich layer in the vicinity of interfacial intermetallic (IMC) layer and the fracture morphology mainly appeared to be a ductile-like structure. Meanwhile, the fracture of Sn3.8Ag0.7Cu joints propagated along either the interface of IMC/solder or within the IMC layer and showed a brittle failure mode.  相似文献   

15.
The eutectic 80Au/20Sn solder alloy is widely used in high power electronics and optoelectronics packaging. In this study, low cycle fatigue behavior of a eutectic 80Au/20Sn solder alloy is reported. The 80Au/20Sn solder shows a quasi-static fracture characteristic at high strain rates, and then gradually transforms from a transgranular fracture (dominated by fatigue damage) to intergranular fracture (dominated by creep damage) at low strain rates with increasing temperature. Coffin-Manson and Morrow models are proposed to evaluate the low cycle fatigue behavior of the 80Au/20Sn solder. Besides, the 80Au/20Sn solder has enhanced fatigue resistance compared to the 63Sn/37Pb solder.  相似文献   

16.
This study was concerned with the drop performance between the Sn37Pb and the Sn3.8Ag0.7Cu (wt. %) solder joints when the specimens were subjected to drop test after soldering process. The U-notch butt-jointed specimen was adopted and a lab-designed drop tester was employed. Meanwhile, the electrical resistance values of two kinds of solder joints were measured and recorded after certain drop tests, and finally drop number versus resistance curves were plotted and compared. From the resistance variation with the drop number, it was observed that the Sn37Pb joints presented significantly higher drop performance than the Sn3.8Ag0.7Cu ones. For the Sn3.8Ag0.7Cu specimens, the average drop number before failure was approximately 15-18 and then the resistance values sharply increased. However, the average drop number of the Sn37Pb joints was over 110 and the increasing rate of the electrical resistance was smooth, which is consistent with the results of the board-level drop test. Moreover, one specimen of each kind was picked out and the microstructural observation was carried out to investigate the joint deformation behavior in the dynamic load. It was obvious that the plastic deformation capacity of the Sn37Pb joints was remarkably higher than the one of the Sn3.8Ag0.7Cu joints, proving that most of SnAgCu-based solders presented low deformation compatibility and low energy absorption.  相似文献   

17.
The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.  相似文献   

18.
激光重熔在电子封装领域中SnPb共晶钎料凸点制作方面存在极大的优势。采用扫描电子显微镜(SEM)分析了激光加热条件下SnPb共晶钎料与Au/Ni/Cu焊盘之间的界面反应,探讨了钎料中的溶解与扩散动力学。结果表明:CnPb共晶钎料在激光加热瞬间与Au/Ni/Cu焊盘中的Au发生反应,生成Au-Sn金属间化合物,其形貌和分布与激光输入能量密切相关;随着激光输入能量的增加,Au-Su化合物由边境连续层状转变为针状,最后以细小颗粒弥散分布在钎料内部。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号