首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To define the cytoplasmic region(s) of the erythropoietin receptor (EpoR) necessary for promotion of growth and induction of differentiation, mutated EpoR cDNAs containing truncations and conversions of tyrosine residues to phenylalanines were generated. Constructs were introduced into IL-3 dependent Ba/F3 cells by electroporation, and individual transfectants were propagated in methylcellulose-containing medium in the presence of erythropoietin (Epo). Truncated receptor at amino acid 350 was partially deficient in promoting cellular growth and the receptor lacking the box 2 region was not capable of inducing cellular growth. When a large number of cells were screened in Epo-containing liquid medium, clones arose in which Epo-dependent growth was due to activation of the endogenous EpoR gene. Analysis of the degree of Epo-dependent differentiation of the transfectants, based on the steady-state levels of beta major-globin mRNA, showed that the carboxyl terminal 133 amino acids and tyrosyl residues located at positions 429/431 and 460/464 were not necessary for the induction of differentiation. Examination of clones from diverse origins demonstrated that an inverse relationship existed between the rate of Epo-induced cellular replication and the degree of Epo-induced differentiation.  相似文献   

2.
Using an RNase protection assay, globin mRNA species expressed in clones derived from Ba/F3 and B6SUtA cells transfected with the erythropoietin receptor (EpoR) and selected with erythropoietin (Epo) were compared with globin mRNA species induced in corresponding parental cells by sodium butyrate (SB) and trichostatin A (TSA). betaMajor/betaminor- and -1/-2-globin mRNAs were the major species, with trace amounts of epsilon-globin mRNA, formed in Epo-stimulated EpoR+ Ba/F3 clones, whereas SB and TSA allowed expression of all species of globin mRNAs, ie, epsilon, betah1, betamajor/betaminor, zeta, and -1/-2, in parental Ba/F3 cells. In contrast, epsilon- and -1/-2-globin mRNAs were the major species present in Epo-stimulated EpoR+ B6SUtA clones, whereas SB and TSA activated epsilon-, betah1-, betaS/betaT-, and -1/-2-globin genes in parental B6SUtA cells; zeta-globin mRNA was not detected in SB- and TSA-treated B6SUtA cells. Because TSA is a specific inhibitor of histone deacetylase, the mimicry of action exhibited by SB and TSA suggests that the effects of SB are mediated through its ability to inhibit histone deacetylase and that histone deacetylase is an integral part of the repression of globin genes in these interleukin-3-dependent cells. Efficient coinduction of embryonic and adult types of globin mRNA in bone marrow cell lines derived from adult mice indicates that adult hematopoietic precursors possess an embryonic nature. These cell lines are useful models to study the mechanism(s) of developmental globin gene switching.  相似文献   

3.
The erythropoietin receptor (EpoR) has been previously shown to contain a cytoplasmic C-terminal negative regulatory domain, experimental deletion or mutation of which leads to increased sensitivity of expressing cells to the effects erythropoietin (Epo). We have studied a naturally occurring C-terminal truncation mutant of the human EpoR by stably transfecting the growth factor-dependent hematopoietic tissue culture cell line 32D with expression plasmids containing either the wildtype or mutant human EpoR cDNA, thus rendering the cells dependent on Epo for viability and proliferation. In Epo dose-response assays, cells expressing the mutant EpoR displayed hyperresponsiveness to Epo compared with cells expressing comparable numbers of the wild-type EpoR cultured in the presence of fetal bovine serum. We investigated whether enhanced Epo sensitivity of cells expressing the truncated EpoR is associated with alteration in Epo receptor-mediated activation of Stat5, which could have a role in Epo-induced proliferation. Although maximal Stat5 activation in response to a given concentration of Epo was comparable in 32D cells expressing the wild-type or truncated EpoRs, the time course of Epo-induced Stat5 activation was very different. Gel-mobility shift studies revealed the presence of Stat5 DNA-binding activity in nuclear and cytoplasmic extracts of cells expressing the truncated EpoR for a significantly longer time than that observed in similar extracts of cells expressing the wild-type EpoR consistent with decreased rate of inactivation of Stat5 in cells expressing the mutant EpoR. Epo-dependent tyrosine phosphorylation of both Stat5 and Jak2 was also substantially prolonged in cells expressing the truncated EpoR. These results suggest a role for Stat5 in regulation of Epo-mediated cell growth and implicate altered kinetics of Epo-induced Jak2 and Stat5 activation in the pathogenesis of familial erythrocytosis associated with this naturally occurring EpoR gene mutation.  相似文献   

4.
5.
The STAT5 activation has important roles in cell differentiation, cell cycle control, and development. However, the potential implications of STAT5 in the control of apoptosis remain unexplored. To evaluate any possible link between the erythropoietin receptor (EpoR) JAK2/STAT5 transduction pathway and apoptosis, we have investigated apoptosis-resistant cells (ApoR) that arose from positive selection of the erythroid-committed Ba/F3EpoR cells triggered to apoptosis by ectopic expression of the HOX-B8 homeotic gene. We show that JAK2 is normally activated by Epo in both Ba/F3EpoR and ApoR cells. In contrast, both STAT5a and STAT5b isoforms are uniquely activated in a C-truncated form (86 kDa) only in ApoR cells. Analysis of ApoR and Ba/F3EpoR subclones confirmed that the switch to the truncated STAT5 isoform coincides with apoptosis survival and that ApoR do not derive from preexisting cells with a shortened STAT5. In addition, ApoR cells die in the absence of Epo. This indicates that resistance to apoptosis is not because of a general defect in the apoptotic pathway of ApoR cells. Furthermore, we show that the 86-kDa STAT5 protein presents a dominant-negative (DN) character. We hypothesize that the switch to a DN STAT5 may be part of a mechanism that allows ApoR cells to be selectively advantaged during apoptosis. In conclusion, we provide evidence for a functional correlation between a naturally occurring DN STAT5 and a biological response.  相似文献   

6.
Erythropoietin (Epo) regulates the proliferation and differentiation of erythroid cells through interaction with a cell surface receptor (EpoR) that belongs to the cytokine receptor family. The Jak2 tyrosine kinase was previously shown to bind to the EpoR, to be activated upon Epo stimulation, and to play a critical role in Epo-induced proliferation. However, little is known about the role of other tyrosine kinases in Epo signaling. In this paper, we examined whether Syk was involved in EpoR activation. Coimmunoprecipitation experiments showed that the phosphorylated EpoR was associated with the Syk kinase in activated UT7 cells. The interaction of Epo with its receptor led to an increased kinase activity. The use of recombinant Syk Src homology 2 (SH2) domains expressed in tandem or individually revealed that both N- and C-SH2 domains of Syk participated in EpoR binding with a major contribution of the C-terminal SH2 domain. Far Western blotting further indicated that Syk directly binds to the EpoR and that the interaction of Syk with EpoR only occurred after Epo activation. These data suggest that phosphorylation of EpoR on tyrosine residues may mediate Syk binding to the receptor through interaction between the two SH2 domains of Syk and tyrosines of the receptor. We propose that in addition to Jak2, Syk protein kinase may be a component of EpoR signaling.  相似文献   

7.
To develop cell lines which respond to both a physiological cytokine and chemical agents by the induction of differentiation pathway, factor dependent B6SUtA murine bone marrow cells were transfected with the erythropoietin receptor (EpoR). Clones were obtained that exhibited different sensitivities to erythopoietin (Epo), with one clone exhibiting erythroid differentiation in response to Epo, while in another Epo acted as a proliferation stimulus. Moreover, parental B6SUtA cells were sensitive to the initiation of differentiation by butyrate, diazepam and hemin. Thus, B6SUtA cells appear to represent a unique model to dissect the signaling molecules involved in the growth and differentiation pathways employed by Epo and non-physiological chemicals.  相似文献   

8.
The cloning of the erythropoietin receptor (EpoR) in 1989 has allowed very rapid progress in our understanding of the early intracellular events that may be triggered by erythropoietin (Epo) in erythroid progenitor cells. From studies carried out primarily with cell lines expressing exogenous wild-type and mutant EpoRs, it appears that the activated EpoR is capable of triggering many of the same cascades that are utilized by receptors possessing endogenous tyrosine kinase domains. The major challenge over the next decade lies in seeing if these same signaling pathways are also utilized by normal Epo-responsive erythroid progenitors, discriminating between proliferation and differentiation inducing events in these cells, and determining whether various hematologic disorders can be attributed to aberrations in these signaling pathways.  相似文献   

9.
The role of hematopoietic growth factors in lineage commitment and differentiation is unclear. We present evidence that heterologous expression of an erythroid specific receptor allows granulocytic differentiation of a myeloid cell line. We have previously characterized a truncation mutant of the erythropoietin receptor (EpoR), which is associated with familial erythrocytosis (Blood 89:4628, 1997). This truncated EpoR lacks the distal 70 amino acids of the cytoplasmic domain. To study the functional role of this distal receptor domain, 32D cells, a murine interleukin-3 (IL-3)-dependent myeloid line, were transfected with the wild-type EpoR (32D/EpoR WT) or the truncated EpoR (32D/EpoR FE). 32D cells expressing either the full-length or truncated EpoR display equivalent proliferative rates in saturating concentrations of Epo. There is a dramatic difference in maturational phenotype between the two cell lines, however. The 32D/EpoR FE cells and mock transfected 32D cells have an immature, monoblastic morphology and do not express the primary granule protein myeloperoxidase. The 32D/EpoR WT cells, on the other hand, demonstrate granulocytic differentiation with profuse granulation, mature, clumped chromatin, and myeloperoxidase expression. There is no evidence of erythroid differentiation in 32D cells transfected with either the full-length or truncated EpoR. Treatment of the cells with the specific Jak2 inhibitor tyrphostin AG 490 inhibits myeloid differentiation driven by the distal EpoR. We conclude that: (1) the distal cytoplasmic domain of the EpoR is able to induce a specific myeloid differentiation signal distinct from mitogenic signaling, and (2) these data extend to myelopoiesis the growing body of evidence that the cellular milieu, not the specific cytokine receptor, determines the specificity of differentiation after cytokine receptor activation.  相似文献   

10.
We recently showed that a retrovirally transduced prolactin receptor (PrlR) efficiently supports the differentiation of wild-type burst-forming unit erythroid (BFU-e) and colony-forming unit erythroid (CFU-e) progenitors in response to prolactin and in the absence of erythropoietin (Epo). To examine directly whether the Epo receptor (EpoR) expressed by wild-type erythroid progenitors was essential for their terminal differentiation, we infected EpoR-/- progenitors with retroviral constructs encoding either the PrlR or a chimeric receptor containing the extracellular domain of the PrlR and intracellular domain of EpoR. In response to prolactin, both receptors were equally efficient in supporting full differentiation of the EpoR-/- progenitors into erythroid colonies in vitro. Therefore, there is no requirement for an EpoR-unique signal in erythroid differentiation; EpoR signaling has no instructive role in red blood cell differentiation. A synergistic interaction between EpoR and c-kit is essential for the production of normal numbers of red blood cells, as demonstrated by the severe anemia of mice mutant for either c-kit or its ligand, stem cell factor. We show that the addition of stem cell factor potentiates the ability of the PrlR to support differentiation of both EpoR-/- and wild-type CFU-e progenitors. This synergism is quantitatively equivalent to that observed between c-kit and EpoR. Therefore, there is no requirement for an EpoR-unique signal in the synergistic interaction between c-kit and EpoR.  相似文献   

11.
Familial erythrocytosis, associated with high haemoglobin levels and low serum erythropoietin (Epo), has been shown to co-segregate with a sequence repeat polymorphism at the 5' region of the erythropoietin receptor (EpoR) in a large Finnish family. We have investigated the cause of erythrocytosis in an English boy. Sequencing of the cytoplasmic region of the EpoR detected a de novo transition mutation of G to A at nucleotide 6002. This mutation resulted in the formation of a stop codon at amino acid 439 with the loss of 70 amino acids from the carboxy terminus. The mutation (G6002A) has arisen independently in a Finnish family and de novo in this English boy. Patients with unexplained erythrocytosis and low serum Epo levels should be investigated for EpoR mutations.  相似文献   

12.
An important role in O2 sensing has been assigned to microsomal and membrane-bound b-type cytochromes which generate regulatory reactive O2 species (ROS). Recently, ROS have been shown to suppress the in vitro synthesis of erythropoietin (Epo). We investigated the potential of the antioxidant vitamins A, E and C to enhance renal and hepatic Epo production. Renal effects were studied in isolated serum-free perfused rat kidneys. In control experiments without antioxidant vitamins, Epo secretion amounted to 441 +/- 23 mU/g kidney (mean +/- SEM, N = 5) during the three hour period of hypoxic perfusion (arterial pO2 35 mm Hg). Epo secretion significantly increased to 674 +/- 92 mU/g kidney (N = 7) when vitamins A (0.5 microgram/ml), E (0.5 microgram/ml) and C (10 micrograms/ml) in combination were added to the perfusion medium. The effects of the single vitamins were studied in Epo-producing hepatoma cell cultures (lines HepG2 and Hep3B). Vitamin A induced a dose-dependent increase (half-maximal stimulation at 0.2 microgram/ml) in the production of immunoreactive Epo during 24 hours of incubation (such as 680 +/- 51 U Epo/g cell protein in HepG2 cultures with 3 micrograms/ml retinol acetate compared to 261 +/- 15 U/g in untreated controls; N = 4). In contrast, vitamin E (tested from 0.05 to 500 micrograms/ml) and vitamin C (tested from 2 to 200 micrograms/ml) did not increase Epo production in hepatoma cell cultures. Thus, while vitamins E and C may have the potential to protect cells from oxidative damage, vitamin A exerts a specific stimulation of Epo production. Preliminary evidence suggests that this effect of vitamin A involves increased mRNA levels of hypoxia-inducible factor 1 alpha (HIF-1 alpha).  相似文献   

13.
The erythroleukaemic cell line TF-1, infected with either the pBabe neo retrovirus or the retrovirus bearing the human erythropoietin (hEpo) gene, developed three growth factor-independent clones. Erythropoietin (Epo), interleukin-3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) accelerated the proliferation of these clones. Autonomous growth of the clones was independent of Epo because it was not altered by Epo anti-sense oligonucleotides, nor was Epo detectable in culture supernatants. Cells from the mutant clones could not be induced by Epo to express glycophorin A and haemoglobin synthesis was markedly reduced. Haemin reversed the block in Epo-induced haemoglobin synthesis. Acquisition of growth factor-independence appears to be linked with the selective loss of differentiation capacity. These cells may provide a useful model for the study of the mechanisms involved in leukaemic transformation.  相似文献   

14.
Interaction between erythropoietin (EPO) and its membrane receptor induces the proliferation and differentiation of erythroid progenitors. EPO has been shown to activate the JAK2-STAT5 pathway in various hematopoietic cell lines, although the physiological role of this pathway is unclear. We have previously shown that epidermal growth factor activates a chimeric receptor bearing the extracellular domain of the epidermal growth factor receptor linked to the cytoplasmic domain of the EPO receptor, resulting in proliferation of interleukin-3-dependent hematopoietic cells and erythroid differentiation (globin synthesis) of EPO-responsive erythroleukemia cells. In the present study, we introduced various deletion and tyrosine to phenylalanine substitution in the cytoplasmic domain of the chimeric receptor and expressed these mutant chimeras in an EPO-responsive erythroleukemia cell line, ELM-I-1. Mutant chimeric receptors retaining either Tyr343 or Tyr401 could activate STAT5, judged by tyrosine-phosphorylation of STAT5 and induction of CIS, a target gene of STAT5. These mutants were able to induce erythroid differentiation. However, a chimeric receptor containing both Y343F and Y401F mutations could not activate STAT5 nor induce erythroid differentiation. Thus, Tyr343 or Tyr401 of the EPO receptor are independently necessary for erythroid differentiation as well as STAT5 activation. Moreover, exogenous expression of dominant-negative STAT5 suppressed EPO-dependent erythroid differentiation. These findings suggest that STAT5 plays an important role in erythroid differentiation through the EPO receptor cytoplasmic domain.  相似文献   

15.
16.
17.
18.
19.
SHP-1 protein tyrosine phosphatase is a critical negative regulator of mitogenic signaling, as demonstrated by the heightened growth responses to hematopoietic growth factors in hematopoietic cells of motheaten mice, which lack functional SHP-1 expression due to mutations in the SHP-1 gene. The mitogenic signaling molecules dephosphorylated by SHP-1 have not been fully identified. We detected two proteins (p32/p30) that are hyperphosphorylated in a DA3/erythropoietin receptor (EpoR) cell line that expresses a mutant containing the SHP-1 C-terminus that suppresses the function of the endogenous phosphatase and induces hyperproliferative responses to interleukin-3 (IL-3) and Epo. Hyperphosphorylated p32/p30 are also detected in motheaten hematopoietic cells, demonstrating an association of p32/p30 hyperphosphorylation with SHP-1-deficiency and growth factor-hyperresponsiveness. The hyperphosphorylated p32/30 associate with SHP-1 via its C-terminus, because they coimmunoprecipitate with the phosphatase and the C-terminal mutant and they bind in vitro to a synthetic peptide of the mutant but not the GST fusion proteins of SHP-1 SH2 domains. Induction of p32/p30 phosphorylation by IL-3 or Epo occurs mainly at 2 to 18 hours poststimulation in the DA3/EpoR cell line, indicating p32/p30 as novel signaling molecules during cell cycle progression. These data demonstrate a function for the SHP-1 C-terminus in recruiting potential substrates p32/p30 and suggest that SHP-1 may regulates mitogenic signaling by dephosphorylating p32/p30.  相似文献   

20.
Hemangioblastomas are highly vascular tumors of the central nervous system that overexpress the hypoxia-inducible gene, vascular endothelial growth factor (VEGF), as a consequence of mutational inactivation of the von Hippel-Lindau tumor suppressor gene (VHL). Previous reports showed that hemangioblastomas can also express erythropoietin (Epo), which is also hypoxia-inducible. However, Epo expression in hemangioblastomas was observed only in individual cases, and the analyses were mainly based on indirect determination of erythropoiesis-stimulating activity. Therefore, we analyzed a series of 11 hemangioblastomas for Epo, VEGF, and VHL expression by Northern blot analysis and compared the results with normal brain and glioblastomas. Surprisingly, we observed Epo mRNA expression in all hemangioblastoma specimens analyzed, but in none of four glioblastomas. In contrast, VEGF mRNA was expressed in all hemangioblastomas and all glioblastomas. In situ hybridization revealed neoplastic stromal cells as Epo- and VEGF-producing cells in hemangioblastomas. These results suggest that in the nonhypoxic microenvironment of hemangioblastoma, Epo, similar to VEGF, might be negatively regulated by the VHL gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号