首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
熊涛  宋苏华  黄锦卿  黄寅  谢明勇 《食品科学》2011,32(11):114-117
模拟人体消化道环境,即在人工胃液、人工肠液、胆盐和高盐环境下对植物乳杆菌NCU116的耐受力进行研究。结果表明:植物乳杆菌NCU116在pH1.5和pH2.5的人工胃液中培养3h,存活率分别达到了32.62%和45.76%,在pH3.5以上的人工胃液中能保持很高的存活率;在人工肠液中作用4h,存活率达到了49.63%;牛胆盐环境中培养24h后的NCU116活菌数随牛胆盐质量浓度(0.03~1.00g/mL)的增加而降低,但活菌数均保持在107CFU/mL以上;NaCl高盐环境中培养24h后的活菌数随NaCl质量浓度(1~8g/100mL)的增加而稍有降低,当NaCl质量浓度为8g/100mL时,活菌数仍在108CFU/mL以上。这表明植物乳杆菌NCU116对人工胃液、人工肠液、胆盐和高盐具有较好的耐受力,在食品和保健品工业中具有良好的应用前景。  相似文献   

2.
Halotolerant Brevibacterium sp. JCM 6894 that was subjected to an osmotic downshock (0.7 M NaCl to 0 M) was examined for its survival and uptake of ectoine in the presence of ectoine and/or carbon sources. In the presence of ectoine alone, the rates of ectoine uptake by the 1 h-downshocked cells were low and high in the absence and presence of 0.7 M NaCl, respectively, which were in parallel with the rates of cell growth. The presence of glutamate or amino acids together with ectoine exerted a stimulative effect on the survival of downshocked cells. The incubation time of the cells subjected to osmotic downshock strongly affected ectoine uptake as well as the cell growth of this strain, suggesting that the transporter of ectoine in the strain JCM 6894 was stimulated during the osmotic downshock for about 1 h. Different downshock strengths had marked effects on the rate of ectoine uptake when the downshocked cells were incubated in the presence of NaCl.  相似文献   

3.
l ‐Phenylalanine (l ‐Phe) and l ‐tyrosine (l ‐Tyr) are L‐α‐aromatic amino acids that have recently been discovered to be important components of the savory fractions of soy sauce in addition to l ‐glutamate. Their effects are evaluated on the umami or savory taste of monosodium L‐glutamate (MSG), with or without sodium chloride (NaCl). Because l ‐Phe at subthreshold concentration (1.0 mM) significantly enhances an umami taste of a MSG/NaCl mixture (P= 0.000), combinations of 4 subthreshold concentrations (0, 0.5, 1.5, and 5.0 mM) of l ‐Phe with a weakly suprathreshold MSG (4.0 mM) and NaCl (80 mM) mixture were then rated for salty and umami intensities relative to those of standard solutions. L‐Phe was found to significantly enhance the umami tastes of the MSG/NaCl mixtures when it was added in a concentration range of 0.5 to 5.0 mM (P= 0.000). However, neither the umami taste of MSG alone nor the salty taste of NaCl alone was intensified. In a further experiment, l ‐Tyr at the 3 subthreshold concentrations (0, 0.5, and 1.5 mM) studied was shown to have the same activity as L‐Phe. The phenomenon of umami or savory enhancement by subthreshold aromatic amino acids in the soy sauce system has been established.  相似文献   

4.
In order to get the high liquefaction yield from marine algae cell mass to fuel oil, the effect of salt stress on the accumulation of lipids and triacylglyceride in Dunaliella cells was investigated. Although initial NaCl concentration higher than 1.5 M markedly inhibited cell growth, increase of initial NaCl concentration from 0.5 (equal to sea water) to 1.0 M resulted in a higher intracellular lipid content (67%) in comparison with 60% for the salt concentration of 0.5 M. Addition of 0.5 or 1.0 M NaCl at mid-log phase or the end of log phase during cultivation with initial NaCl concentration of 1.0 M further increased the lipid content (70%).  相似文献   

5.
Myofibrils isolated from post‐rigor chicken Pectoralis major (PM, white) and Gastrocnemius (Gas, red) muscles were irrigated with various concentrations of NaCl (0.1–1.0 M ) with or without 10 mM sodium pyrophosphate at pH 5.5 and 6.0. Structural changes were examined using phase contrast microscopy. PM myofibril samples tended to show more definitive H‐zones but obscure Z‐lines compared to Gas myofibrils. Significant myofibril swelling, accompanied by a pronounced protein extraction, occurred in 0.5 M NaCl solution. The extent of swelling as well as protein extraction increased with the NaCl concentration up to about 0.8 M . Addition of pyrophosphate facilitated myofibril swelling and reduced the minimal NaCl concentration for swelling to 0.4 M . Without pyrophosphate, protein extraction for both PM and Gas myofibrils occurred along the A‐band, sometimes starting from the centre, but when pyrophosphate was added, the extraction began from the ends of the A‐band. At pH 5.5, protein extraction was similar for PM and Gas, but at pH 6.0, PM myofibrils were more extractable and their architecture changed more extensively than Gas myofibrils, especially when pyrophosphate was present. The results may explain the different water‐imbibing abilities of white and red meat when processed with salt and phosphate. © 2000 Society of Chemical Industry  相似文献   

6.
The intensification of biosynthesis of fructooligosaccharides in the presence of high salt concentrations was observed during sucrose (10%) fermentation by Zymomonas mobilis 113S. A 0.6 M NaCl concentration led to an increase of oligosaccharide productivity by 3.5-fold. Sorbitol formation was increased in the presence of 0.16 M NaCl and was inhibited at highest salt concentrations. In a medium with high (65%, w/w) sucrose content the salts gave inhibitory effects on fructooligosaccharide production by lyophilised Z. mobilis cells. Influence of salts on gluconic acid and sorbitol formation under these conditions was studied. The ratio of oligosaccharides and gluconic acid productivity (Qolig./Qglucon.) was increased approximately 2 times at 1% KCl. Sorbitol formation was not significantly influenced in the presence of KCl (up to 2%).  相似文献   

7.
Lactobacillus alimentarius BJ33 has been tested for its biopreservative capacities to improve quality and safety in many meat products. The combination of different preservatives such as NaCl, glucono-delta-lactone and citric acid with this protective culture during the manufacture of sausages represent an interesting alternative to control microbial spoilage and to extend product shelf life. The use of these preservatives may also limit the growth of L. alimentarius. In this study, the sublethal doses of these preservatives were determined and tested in combination to verify if the organism was able to adapt to these stresses. The sublethal doses of gluconic acid, citric acid, and NaCl were 100-110 mM, 50-55 mM and 8%, respectively. When the culture was first grown in MRS broth containing citric acid (50 or 55 mM) or gluconic acid (100 or 110 mM) and then transferred in MRS broth containing NaCl (8%), only limited growth was observed (O.D.(600 nm) = 0.2-0.3) after 6 days at 30 degrees C. However, when the culture was first grown in NaCl and then transferred in MRS broth containing gluconic or citric acid, growth was observed after 1 day (O.D.(600 nm) = 0.4-0.5) and after 5 days an O.D.(600 nm) of 0.8 was reached. Cell filamentation was also observed under electron microscopy when cells were grown for 2 days in presence of gluconic and citric acid at their sublethal doses and with a combination of 18 mM gluconic acid and 37 mM citric acid, but cellular elongation was not observed with cultures exposed to 8% NaCl. These results suggest that two different adaptation mechanisms are induced in L. alimenatrius when treated with organic acids and NaCl.  相似文献   

8.
Theasaponin E1 destroys the salt tolerance of yeasts   总被引:1,自引:0,他引:1  
Cells of Zygosaccharomyces rouxii in a medium containing a high concentration of NaCl were killed during incubation for 2-4 h with a low concentration of a mixture of saponins from tea seeds (TSS). The higher the concentration of NaCl in the medium, the higher the inhibitory effect of TSS on the growth of the yeast. The above inhibitory effect of TSS on the growth of the yeast was not observed when cells were incubated in hypertonic media composed of nonionic substances such as sugars. The ATPase activity of plasma membrane preparations from the yeast cells was slightly affected by the addition of TSS. It is shown that TSS facilitates leakage of glycerol from the yeast cells under NaCl-hypertonic conditions. The major inhibitor in the mixture of saponins was isolated and identified as theasaponin E1. Its isomer, theasaponin E2, did not have any effect on the salt tolerance of Z. rouxii or Saccharomyces cerevisiae.  相似文献   

9.
The aim of this study was to investigate the potential effect of adaptive stationary phase acid tolerance response (ATR) of Listeria monocytogenes Scott A cells on their attachment to stainless steel (SS) under low pH or/and high salt conditions and on the subsequent resistance of sessile cells to strong acid challenge. Nonadapted or acid-adapted stationary-phase L. monocytogenes cells were used to inoculate (ca. 10? CFU/ml) Brain Heart (BH) broth (pH 7.4, 0.5% w/v NaCl) in test tubes containing vertically placed SS coupons (used as abiotic substrates for bacterial attachment). Incubation was carried out at 16 °C for up to 15 days, without any nutrient refreshment. L. monocytogenes cells, prepared as described above, were also exposed to low pH (4.5; adjusted with HCl) or/and high salt (5.5% w/v NaCl) stresses, during attachment. On the 5th, 10th and 15th day of incubation, cells attached to SS coupons were detached (through bead vortexing) and enumerated (by agar plating). Results revealed that ATR significantly (p<0.05) affected bacterial attachment, when the latter took place under moderate acidic conditions (pH 4.5, 0.5 or 5.5% w/v NaCl), with the acid-adapted cells adhering slightly more than the nonadapted ones. Regardless of acidity/salinity conditions during attachment, ATR also enhanced the resistance of sessile cells to subsequent lethal acid challenge (exposure to pH 2 for 6 min; pH adjusted with either hydrochloric or lactic acid). The trend observed with viable count data agreed well with conductance measurements, used to indirectly quantify remaining attached bacteria (following the strong acid challenge) via their metabolic activity. To sum, this study demonstrates that acid adaptation of L. monocytogenes cells during their planktonic growth enhances their subsequent attachment to SS under extended exposure (at 16 °C for up to 15 days) to mild acidic conditions (pH 4.5), while it also improves the resistance of sessile cells to extreme acid treatment (pH 2). Therefore, the ATR of bacterial cells should be carefully considered when applying acidic decontamination strategies to eradicate L. monocytogenes attached to food processing equipment.  相似文献   

10.
ABSTRACT:  The effects of residual salt in surimi on physicochemical properties as affected by various freeze and thaw (FT) cycles were examined. Fresh Alaska pollock surimi was mixed with 4.0% sugar and 5.0% sorbitol, along with 8 combinations of salt (0.4%, 0.6%, 0.8%, and 1.0% NaCl) and sodium polyphosphate (0.25% and 0.5%), vacuum-packed, and stored at −18 °C until used. FT cycles (0, 6, and 9) were used to mimic long-term frozen storage. At the time of gel preparation, each treatment was appropriately adjusted to maintain 2% salt and 78% moisture. The pH decreased as residual salt increased during frozen storage. Salt extractable protein (SEP) decreased ( P < 0.05) as FT cycles extended from 0 to 9. Regardless of residual salt and phosphate concentration during frozen storage, whiteness value ( L *− 3 b *) decreased ( P < 0.05) as FT cycles extended, except for samples with 0.4% salt/0.5% phosphate and 0.6% salt/0.25% phosphate. Water retention ability (WRA) and texture significantly ( P < 0.05) decreased at higher salt content (0.8% and 1.0%) after 9 FT cycles, indicating higher residual salt concentration can shorten the shelf life of frozen surimi. Our study revealed lower residual salt concentration and higher phosphate concentration are likely to extend the shelf life of frozen surimi.  相似文献   

11.
Lactococcus lactis is a culture widely used in salt-containing dairy products. Salt hinders bacterial growth, but exposure to environmental stress may protect cells against subsequent stress, including salt. The objective of this study was to evaluate the salt tolerance of L. lactis R-604 after exposure to various stresses. The culture was subjected to 10% (vol/vol) ethanol for 30 min, mild heat at 52°C for 30 min, 15 mM hydrogen peroxide for 30 min, or UV light (254 nm) for 5 min and compared with a control. Starting with 5 log cfu/mL for all treatments, growth was determined in M17 broth with 5 NaCl concentrations (0, 1, 3, 5, and 7% wt/vol). Plating was conducted daily for 5 d. Salt tolerance was enhanced with mild heat exposure before growth in M17 broth with 5% (wt/vol) NaCl on d 3, 4, and 5, and with exposure to hydrogen peroxide and ethanol stresses before growth in M17 broth with 5% (wt/vol) NaCl on d 4 and 5. Exposure of this culture to mild heat, hydrogen peroxide, or ethanol before growth in M17 broth containing 5% (wt/vol) salt can enhance its survival, which could be beneficial when using it in salt-containing dairy products.  相似文献   

12.
考察巴氏醋杆菌Ap2012在不同碳源酵母膏平板的生长情况及其对乙醇、糖、酸、NaCl的耐受性。结果表明,在酵母膏平板上,Ap2012能利用葡萄糖、乙醇作为碳源生长并产酸,能较好地利用甘油、果糖、蔗糖、山梨糖,对甘露醇的利用较差。乙醇体积分数为12.4%时巴氏醋杆菌Ap2012的生长受明显抑制,达到15.8%时转酸能力受明显抑制。葡萄糖的质量浓度达到300 g/L,NaCl的质量浓度为15 g/L时,巴氏醋杆菌Ap2012的生长和转酸能力受到明显抑制。乙酸质量浓度达到42 g/L时,巴氏醋杆菌Ap2012的生长受到明显抑制。结果表明,巴氏醋杆菌Ap2012对高浓度糖及乙醇有较好的耐受性,对乙酸和NaCl的耐受性较差。  相似文献   

13.
Cells of Zygosaccharomyces rouxii in a medium containing a high concentration of NaCl were killed during incubation for 2–4 h with a low concentration of a mixture of saponins from tea seeds (TSS). The higher the concentration of NaCl in the medium, the higher the inhibitory effect of TSS on the growth of the yeast. The above inhibitory effect of TSS on the growth of the yeast was not observed when cells were incubated in hypertonic media composed of nonionic substances such as sugars. The ATPase activity of plasma membrane preparations from the yeast cells was slightly affected by the addition of TSS. It is shown that TSS facilitates leakage of glycerol from the yeast cells under NaCl-hypertonic conditions. The major inhibitor in the mixture of saponins was isolated and identified as theasaponin E1. Its isomer, theasaponin E2, did not have any effect on the salt tolerance of Z. rouxii or Saccharomyces cerevisiae.  相似文献   

14.
ABSTRACT: Waste water containing high levels of NaCl from cucumber fermentation tank yards is a continuing problem for the pickled vegetable industry. A major reduction in waste salt could be achieved if NaCl were eliminated from the cucumber fermentation process. The objectives of this project were to ferment cucumbers in brine containing CaCl2 as the only salt, to determine the course of fermentation metabolism in the absence of NaCl, and to compare firmness retention of cucumbers fermented in CaCl2 brine during subsequent storage compared to cucumbers fermented in brines containing both NaCl and CaCl2 at concentrations typically used in commercial fermentations. The major metabolite changes during fermentation without NaCl were conversion of sugars in the fresh cucumbers primarily to lactic acid which caused pH to decrease to less than 3.5. This is the same pattern that occurs when cucumbers are fermented with NaCl as the major brining salt. Lactic acid concentration and pH were stable during storage and there was no detectable production of propionic acid or butyric acid that would indicate growth of spoilage bacteria. Firmness retention in cucumbers fermented with 100 to 300 mM CaCl2 during storage at a high temperature (45 °C) was not significantly different from that obtained in fermented cucumbers with 1.03 M NaCl and 40 mM CaCl2. In closed jars, cucumber fermentations with and without NaCl in the fermentation brine were similar both in the chemical changes caused by the fermentative microorganisms and in the retention of firmness in the fermented cucumbers.  相似文献   

15.
Emulsion formation with chicken breast muscle was investigated using timed emulsification. Emulsions were made at a fixed oil/water ratio of 2:1 by Omni-mixing for various lengths of time between 0 and 5 min; then the emulsions were centrifuged and the aqueous layer analyzed for protein. Emulsions formed using whole muscle or muscle washed with low molarity salt solution and suspended in buffered (10 mM sodium phosphate, pH 7.0) 0.6M NaCl were superior in stability upon centrifugation to those made with muscle in distilled water, buffered 0.025M NaCl or buffered 0.05M NaCl. Size of insoluble protein pellets from the centrifuged emulsions decreased as emulsification time increased. Little emulsifying effect of the low-salt soluble (sarcoplasmic) protein, defined as those proteins extracted with buffered 0.05M NaCl, was observed in the presence or absence of high-salt solubilized protein.  相似文献   

16.
When cultured in M63 minimal medium plus 0.6 M NaCl, the growth of Shewanella putrefaciens was strongly inhibited. The addition of an extract from smoked salmon to this medium restored the growth almost to the unstressed level. A comparison of the 13C NMR spectra of intracellular solutes extracted from S. putrefaciens cells cultured in both conditions revealed the accumulation of glycine betaine (GB) from the smoked salmon extract (SSE). Analysis of the osmoprotective properties of this extract for several strains of Escherichia coli (which differ from each other in their ability to accumulate GB (i) from the surrounding environment, and (ii) from its hydroxylated precursor choline), demonstrated the absence of GB in the SSE. From the overall results, we inferred that salt-stressed S. putrefaciens cells accumulated GB from choline present in the SSE. Furthermore, the use of [14C]-labeled betaines gave evidence that S. putrefaciens (i) oxidised choline to GB, (ii) accumulated GB as a non-metabolisable osmolyte (up to 1300 nmol (mg dw)(-1) when cultured in a medium containing 0.5 M NaCl and either 1 mM choline or 1 mM GB), and (iii) both choline and GB uptake activities were osmotically upregulated (both activities were increased more than 50-fold in media containing 0.4 to 0.6 M NaCl). In all, our results suggest that in salted smoked salmon, S. putrefaciens imports and oxidises choline, leading to the intracellular accumulation of GB.  相似文献   

17.
Pichia sorbitophila is a halotolerant yeast capable of surviving to extracellular NaCl concentrations up to 4 M in mineral medium when glucose or glycerol are the only carbon and energy sources. Evidence is presented here that glycerol, the main compatible solute this yeast accumulates so as to maintain osmotic balance, is actively co-transported with protons. This transport system was shown to be constitutive, not needing induction by either glycerol or salt, and was not repressible by glucose. In glucose- or glycerol-grown cells, a simple diffusion was detectable, and iterative calculations were performed to calculate kinetic parameters, in the presence and in the absence of NaCl. At 25°C, pH 5·0, in glucose-grown cells these were: Km = 0·81 ± 0·11 mM and Vmax = 634·2 ± 164·8 μmol h?1 per g (glycerol); Km = 1·28 ± 0·60 mM and Vmax = 558·6 · 100·6 μmol h?1 per g (protons). Correspondent stoichiometry was approximately 1, either for these conditions or in the presence of 1 M -NaCl. An increase in acumulation capacity was evident when different concentrations of NaCl were present. This capacity was shown to be dependent on ΔpH and membrane potential, consistently with an electrogenic character. We suggest that the main role of this system is in osmoregulation, by keeping glycerol accumulated inside the cells, compensating for leakage, due to its liposoluble character.  相似文献   

18.
Debaryomyces hansenii, a halophile yeast found in shallow sea waters and salty food products grows optimally in 0.6 M of either NaCl or KCl, accumulating high concentrations of Na(+) or K(+). After growth in NaCl or KCl, a rapid efflux of either accumulated cation was observed if the cells were incubated in the presence of KCl or NaCl, respectively, accompanied by a slower accumulation of the cation present in the incubation medium. However, a similar, rapid efflux was observed if cells were incubated in buffer, in the absence of external cations. This yeast shows a cation uptake activity of both (86)Rb(+) and (22)Na(+) with saturation kinetics, and much higher affinity for (86)Rb(+) than for (22)Na(+). The pH dependence of the kinetics constants was similar for both cations, and although K(m) values were higher at pH 8.0, there was also an increase in the V(max) values. The accumulation of (22)Na(+) was found to be increased in cells grown in the presence of 0.6 M NaCl. (86)Rb(+) was also accumulated more in these cells, but to a slightly greater extent. The inhibition kinetics of the uptake of (22)Na(+) by K(+), and that of (86)Rb(+) by Na(+) was found to be non-competitive. It can be concluded that Na(+) in D. hansenii is not excluded but instead, its metabolic systems must be resistant to high salt concentrations.  相似文献   

19.
The amount of protein extracted from chicken breast muscle at low salt (0–50 mM NaCl) increased as the salt concentration of the extracting solutions increased. The addition of 10 mM sodium phosphate buffer pH 7 (Pi) caused a marked increase in protein extractability at all salt concentrations. A particular polypeptide chain of about 150,000 daltons appeared to be particularly sensitive to the extraction conditions. At high salt (0.6M NaCl, 50 mM sodium phosphate buffer pH 7.0) a second extraction still contained significant amounts of protein. The amount of protein extracted was maximized at a 1/20 dilution. On the other hand, the protein extract-ability of trout white muscle, showed a smaller Pi effect and very little dependence on low salt concentration. The protein extractability of lobster flexor muscle showed little change with either increased salt or Pi. For all three muscles extraction over time with either high or low salt remained essentially constant after the first day with the most protein being extracted from lobster muscle and the least from chicken muscle.  相似文献   

20.
Growth kinetics and morphological characteristics of Listeria monocytogenes Scott A grown under stress conditions induced by increasing levels of NaCl and EDTA were studied as a function of temperature. L. monocytogenes Scott A was inoculated into brain heart infusion broth (pH 6) at 19, 28, 37, and 42 degrees C. Test cultures contained NaCl (at concentrations of 4.5, 6.0, and 7.5%) or EDTA (at concentrations of 0.1, 0.2, and 0.3 mM); control cultures contained 0.5% NaCl. Growth curves were fitted from plate count data by the Gompertz equation, and growth kinetics parameters were derived. Stationary-phase cells were examined by scanning and transmission electron microscopy. Generation times (GTs) and lag phase duration times (LPDs) increased as additive levels were increased. The bacterium grew at all NaCl levels. At 37 and 42 degrees C, growth was slow in media containing 7.5% NaCl, and no growth occurred in media containing 0.3 mM EDTA. Temperature was a major factor in certain stress conditions that led to cell elongation and loss of flagella. Cells in control media at 28 degrees C grew as short rods (0.5 by 1.0 to 2.0 microm), while at 42 degrees C most cells were 4 to 10 times as long. Higher levels of NaCl at higher temperatures resulted in longer and thicker cells. At 28 degrees C, 0.1 mM EDTA had little effect on growth kinetics and morphology; however, 0.3 mM EDTA caused a sixfold increase in GT and LPD and loss of flagellae, with most cells being two to six times as long as normal. Cell length did not correlate with growth kinetics. The results of this study suggest that the effect of altered morphological characteristics of L. monocytogenes cells grown under stress on the virulence and subsequent survival of these cells should be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号