首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on space charge evolution in crosslinked polyethylene (XLPE) planar samples approximately 1.20 mm thick subjected to electric stress level of 30 kVdc/mm at four temperatures 25, 50, 70 and 90 degC for 24 h. Space charge profiles in both as-received and degassed samples were measured using the laser induced pressure pulse (LIPP) technique. The DC threshold stresses at which space charge initiates are greatly affected by testing temperatures. The results suggest that testing temperature has numerous effects on space charge dynamics such as enhancement of ionic dissociation of polar crosslinked by-products, charge injection, charge mobility and electrical conductivity. Space charge distributions of very different nature were seen at lower temperatures when comparing the results of as-received samples with degassed samples. However at higher temperature, the space charge distribution took the same form, although of lower concentration in degassed samples. Space charge distributions are dominated by positive charge when tested at high temperatures regardless of sample treatment and positive charge propagation enhances as testing temperature increases. This can be a major cause of concern as positive charge propagation has been reported to be related to insulation breakdown  相似文献   

2.
交联工艺对交联聚乙烯中空间电荷的影响   总被引:2,自引:2,他引:2  
空间电荷是描述介质微观缺陷(介质局域态密度或陷阱密度)的重要表征参数,空间电荷在有机材料中聚集会导致材料的老化和击穿性能下降.文章以交联聚乙烯为研究对象,用电声脉冲法( PEA)测量了在不同电场强度和短路条件下交联聚乙烯试样中空间电荷的分布,分析了交联温度和交联时间对空间电荷的影响,并用红外光谱( IR)分析了空间电荷对交联聚乙烯局部化学结构的影响.通过研究,认为从空间电荷角度来看,温度为 170℃、交联时间为 20分钟或以上时交联效果最佳,此时,试样中因添加剂等小分子所导致的杂质粒子减少到最小程度,减少了电荷陷阱,因此在直流电场下空间电荷积聚也最少.  相似文献   

3.
Space charge is formed in cables insulated with crosslinked polyethylene. It has not been clear whether the crosslinking byproducts or the crosslinked polymer morphology is responsible for the space charge formation. In order to clarify this point additive-free noncrosslinked low-density polyethylene, additive-free crosslinked polyethylene, and degassed crosslinked polyethylene were soaked in the crosslinking byproducts and the space charge distribution was measured after DC voltage application. Samples tested are divided into two categories. The first category is a soaked single-layered sheet and the second category is a two-layered specimen consisting of a soaked sheet and a nonsoaked sheet. As a result, the following conclusions were obtained. (1) Cumyl alcohol is responsible for homocharge layers in front of the electrodes in both low-density and crosslinked polyethylene sheets. (2) Acetophenone is responsible for heterocharge formation in crosslinked polyethylene, presumably as a synergistic effect with water. (3) alpha -methylstyrene has no effect on space charge formation in low-density polyethylene, while it assists charge trapping in crosslinked polyethylene. (4) Charge trapping occurs easier in degassed crosslinked polyethylene than in low-density polyethylene, probably because of carbonyl groups induced by crosslinking  相似文献   

4.
交联聚乙烯(XLPE)因其优异的介电、理化性能而被广泛应用于电缆绝缘领域。在电缆的服役过程中,电缆绝缘内部会积聚空间电荷,严重时可引发电场畸变,导致电缆击穿事故发生。对于直流XLPE电缆,空间电荷的积聚及影响更加不容忽视。针对直流XLPE电缆绝缘中产生的空间电荷积聚效应,目前学界主要采用共混改性、聚合物链段接枝极性基团、纳米掺杂改性及制备高纯净绝缘料等方法来进行控制,改性后的直流XLPE电缆绝缘对空间电荷产生的抑制效果均有所提升。文中首先对上述直流XLPE电缆绝缘中空间电荷的抑制方法进行综述,介绍其抑制原理以及相应的抑制效果,然后对比总结不同抑制空间电荷方法的优缺点,最后对未来直流XLPE电缆绝缘中空间电荷抑制方法的研究发展作出展望。  相似文献   

5.
The correlation between charge distribution in an aged crosslinked polyethylene (XLPE) cable and the location of water trees has been studied. The space charge radial distributions at different angle in the insulating wall of a service-aged XLPE coaxial cable, induced by application of a DC stress, were measured using the pulsed electroacoustic method. Furthermore, a cross section of sliced insulating wall was observed with an optical microscope to compare with the radial space charge distribution. The cable under investigation was electrically aged in service at 6.6 kV AC for 25 years in wet conditions. Water trees were found at the position in which space charge was observed. On the other hand, no water tree was found at the position in which the space charge was not observed. Judging from these results, the space charge measurement seems to be useful for the diagnosis of water trees in aged cables  相似文献   

6.
This paper reports on an investigation into the space charge formation and decay at different material interfaces. In particular, the influence of the interface between electrode and polymer or polymer and polymer on the space charge dynamics has been studied. Planar samples were subjected to high DC electric stresses for extended periods of time and space charge measurements taken using the pulsed electroacoustic (PEA) technique. It has been found that the types of interface between electrode and polymer play a significant role in determining the charge distribution in the insulation and that the interface between polymer and polymer acts as a potential barrier to electrons while allowing positive charge carriers through easily.  相似文献   

7.
In the present work, electrical trees were experimentally generated in virgin and gamma-irradiated XLPE cable insulation, under AC voltages. Fibrillar type of electrical tree structure forms from the defect site in gamma-irradiated specimens. Failure times due to electrical trees were analysed by adopting Weibull distribution studies. The results of the study indicate that gamma-irradiated specimens, where the rate of tree propagation is high, causing early failure of insulation. Pulsed electro acoustic emission (PEAE) technique was adopted to understand the space charge formation in XLPE cable insulation. The results of the study indicate that homo and hetero charges form near to the electrodes especially in gamma-irradiated XLPE cable insulation. Variations in space charge density at different voltage magnitudes with time were analysed. It is observed that the electric field in the insulating material becomes highly non-uniform on occurrence of hetero charges. It is also realized that on removal of applied voltage, the charge decay is less with gamma-irradiated specimens. Based on the present study, it could be concluded that Space charge density in insulating material and life of insulating material due to electrical tree formation shows inverse relationship.  相似文献   

8.
The packet-like space-charge behaviour in an oxidized crosslinked polyethylene (XLPE) film doped with antioxidant is discussed through computer simulation. The model is based on the following assumptions, (1) both electrons and holes are injected from the electrodes and they migrate to the opposite electrodes by hopping transport, (2) holes are also supplied from acceptor sites depending on the field, (3) the holes are excited to the hopping level only via an intermediate level. In this model, a space-charge packet is not caused by the excess of mobile electrons but by the deficiency in mobile holes. The ionized acceptors left behind by hole migration form an apparent negative space charge packet and it propagates towards the anode as the high field region moves  相似文献   

9.
Information on space-charge behavior in thick insulated samples aids in understanding the dc characteristics of polymer-insulated dc cables. The pulsed electroacoustic method is used to investigate several space charge formation factors in 2 mm-thick polyethylene (PE). The following results were obtained. For measurement factors: (1) A polymeric semiconducting electrode provides a more accurate measurement than does a metal electrode as a result of better matching of acoustic impedance with PE. (2) Within a dc electrical stress range of several tens kV/mm, the space charge distributions under and after dc voltage application are almost the same; this is due to a comparatively long time of space-charge decay. (3) The space-charge distribution of a plate sample agrees with that of a cable sample having the same insulation thickness. For insulating material factors: (1) The amount of space charge in crosslinked polyethylene (XLPE) is much larger than that in low-density PE (base of XLPE). The space charge of XLPE continues to increase even after dc voltage application (24 h); that of LDPE reaches equilibrium with a few hours. (2) The aforementioned space charge difference between XLPE and LDPE is assumed to be caused by ionic impurities in XLPE, not by the additives themselves (acetophenon and cumylalcohol as byproducts of cross linking and antioxidant).  相似文献   

10.
Space charge is believed to play an important role in ac electrical ageing of polymeric insulation, particularly where electrical treeing is the dominant cause of premature failure. The majority of work to date has been on the space charge characteristics under dc electric stresses, whereas work on the dynamics and the role of space charge on electrical breakdown under 50 Hz ac conditions have only received limited attention. Consequently, a full understanding of space charge trapping and dynamics under ac operating conditions is required if ever more reliable polymer insulated cable systems are to be developed. The present paper reports on aspects of an on-going investigation into the measurement of space charge in XLPE insulation under 50 Hz ac stress using the laser induced pressure propagation (LIPP) technique. Some important features of the method are described such as, point on wave control of the laser and use of correction factors to offset variations in the laser power and ablation of the target material. Emphasis has also been placed on establishing a simple method for analysing data, termed "X-plots". Some preliminary results of the space charge and electric stress distribution of un-degassed and degassed crosslinked polyethylene (XLPE) plaques aged electrically under ac stress (30 kVpeak/mm) for 24 h are also presented  相似文献   

11.
The effects of cross-linking by-products (residues) quantity and thermal treatment on space charge accumulation and decay in manufacturer modified XLPEs for DC power cable application have been investigated using the pulsed electro-acoustic technique. The threshold stress for space charge generation among the modified and reference XLPEs during voltage-ramping was found to show considerable variation and to depend upon the material and the amount of residue present. However, the modified XLPE material was found to exhibit a higher threshold for space charge accumulation than the reference XLPE whatever the conditions. De-gassed samples were found to exhibit the highest threshold stress, with that of the modified de-gassed XLPE accumulating no space charge at all even after 24 h stressing at 70 kV. In general heterocharge regions were formed when the residues were present and homocharge or no charge was formed when the residues were removed by degassing. Differences were also found in the space charge decay following short-circuit (volts-off), with the decay of heterocharge being rapid, whereas that of homocharge being slow. The charge accumulations have been tentatively explained by the mechanisms of ion-pair separation when residues are present, and interfacial injection when residues are absent. Decay of the heterocharge is governed by ion-pair displacement just as the generation and will have a similar time scale. In contrast homocharge decay will be governed by charge de-trapping and extend to time scales well beyond that of injection for charge in the deepest traps  相似文献   

12.
In the present paper the formation of space charge in irradiated low-density polyethylene (LDPE) was investigated using the pulsed electroacoustic (PEA) technique. Specimens of LDPE, ~100 μm thick, were irradiated to various doses at room temperature in a 60Co γ source in one of three different environments: ambient room air, oxygen-free nitrogen and vacuum. The results obtained indicate that the space charge distribution is dependent on the irradiation environment. There is a large concentration of positive charge evident in the sample irradiated in air compared to very little for material irradiated in either vacuum or nitrogen under similar conditions. This indicates that the presence of oxygen during irradiation, and thereby oxidation itself, has a major influence on the mechanism by which space charge evolves. Thus the monitoring of space charge may in itself be an indicator of the degree of oxidation and of aging in a material. The evolution of space charge and its decay are discussed  相似文献   

13.
This report deals with the mechanism of space charge accumulation in cross‐linked polyethylene (XLPE) under dc electric field. Space charge was measured by the pulsed‐electroacoustic method with applying dc stress of 20 kV/mm. A large amount of hetero space charge accumulated in fresh XLPE samples. Factors influencing the space charge accumulation were analyzed in regard to cross‐linking by‐products and antioxidant. No space charge was seen when the fresh sample was degassed to remove cross‐linking by‐products. Introducing acetophenone, one of the cross‐linking by‐products, in a degassed sample produces no space charge, suggesting that acetophenone itself could not be the direct factor of space charge formation. However, heating this sample up to 150 °C results in formation of hetero space charges as in virgin samples. Hence, it is concluded that hetero space charges may be formed when impurities, such as an antioxidant, dissociate thermally with the help of acetophenone and that the dissociated products are attracted toward both electrodes under a dc field to form the hetero space charges. © 1999 Scripta Technica, Electr Eng Jpn, 129(2): 13–21, 1999  相似文献   

14.
文中对两回110 k V退役高压交联电缆进行180 a预鉴定试验,目的在于研究不同运行年限的退役高压交联电缆老化前后的空间电荷行为差异,并评估电缆重新投入实际运行的可靠性。通过电声脉冲(PEA)法测量试验前后绝缘层交联聚乙烯(XLPE)试样的空间电荷分布,结合傅里叶红外光谱(FTIR)实验、X射线衍射(XRD)实验揭示试样的微观结构、聚集态结构状态变化与空间电荷的迁移、积聚和消散过程的潜在关系。实验结果表明:实际运行16 a的电缆绝缘由于存在大量杂质使得空间电荷的积聚严重,老化试验后,杂质的减少和淬火反应使得空间电荷的积聚降低且消散过程加快;实际运行32 a的电缆绝缘空间电荷的积聚和消散过程缓和,老化试验后,由于绝缘降解作用和晶态结构的破坏使得空间电荷的积聚加剧且消散过程变得缓慢。  相似文献   

15.
The accumulation of space charge in the crosslinked polyethylene (XLPE) insulation of a power cable sample under dc stress was investigated. The sample was held at 82°C and atmospheric pressure, and at 82°C and 0.1 Pa, for periods up to several days. Such conditioning removed pre-existing space charge, When an external dc field was applied after conditioning at atmospheric pressure and 82°C, space charge accumulated at a rate considerably faster than that observed before conditioning. However the rate of accumulation following conditioning at 82°C under reduced pressure was much slower than that observed before conditioning. The faster rate could be recovered by reconditioning the sample at atmospheric pressure after conditioning under reduced pressure. Inversion of the equilibrium space charge profile, following reversal of the applied field, was observed. This observation is consistent with a model incorporating a spatially-inhomogeneous polarization in the amorphous volume of the XLPE, and electron injection/extraction at the electrodes. The electron transfer between electrode and XLPE in either direction involves the same narrow window of combined donor and acceptor states in the insulator, centered on the Fermi level. The spatially-inhomogeneous polarization in the XLPE originates in a spatially-inhomogeneous distribution of dipole complexes. It is suggested that the dipoles are formed by a process equivalent to nonpermanent oxidation of the XLPE, requiring water as a catalyst  相似文献   

16.
In the past two decades, significant advances in space charge measurements in polymers have resulted in a better understanding of charge dynamics and their effect on material selection and processing. However, little attention has been given to the effect of semiconducting screens on space charge formation in the bulk insulation. This paper reports on space charge measurements on /spl sim/ 1.5 mm thick XLPE and polyolefinic plaques with different treatments and semicon electrodes, using the modified laser induced pressure propagation (LIPP) system. Samples were subjected to DC or 50 Hz AC electric stresses in the region of 25 kV/mm at ambient temperature. Emphasis has been placed on comparing the space charge characteristics of the two insulation systems with different semicon electrodes using an established method termed "X-plots" for analyzing data. The effects of sample treatment (i.e. degassing) on the space charge dynamics are also presented.  相似文献   

17.
This paper discusses the results of space charge, conduction current and electrical lifetime measurements performed on widely-used materials for electrical insulation, that is, low density polyethylene (LDPE) and cross-linked polyethylene (XLPE). Space charge accumulation profiles were compared in LDPE, low density polyethylene plus antioxidant (LDPE+AO) and XLPE, with consideration of thermal treatment effects in LDPE and XLPE. Significant variation (decrease) of accumulated space charge and apparent mobility, as well as slight decrease of conduction current, can be seen going from LDPE to LDPE+AO and XLPE, which may be associated with formation of deeper trap levels (or an increase of their density). On the contrary, electrical life under AC voltage does not show significant differences from LDPE to XLPE. This latter result underlines that life under high AC electrical stress is mostly determined by defects (weak points) rather than material characteristics associated with charge injection and transport.  相似文献   

18.
The accumulation of space charge in planar crosslinked polyethylene (XLPE) samples under dc electric fields at room temperature was investigated using the pulsed electroacoustic (PEA) method. Three different organic semiconductor (semicon) materials containing carbon black at concentrations ~30 %wt, and vacuum-evaporated gold, were used as electrodes. Three different conditioning procedures were investigated. Unconditioned samples developed heterocharge with density increasing from zero at the electrodes, to a maximum at roughly one-third of the thickness, and then falling to zero around the center. They also developed homocharge close to the electrodes. The choice of electrode material had little effect on the heterocharge profile in unconditioned samples. Conditioning by holding at 80°C for four days, at rotary pump pressure or at atmospheric pressure, suppressed the accumulation of heterocharge. Homocharge accumulation close to the electrodes in samples with semicon electrodes was affected little by this conditioning, but was reduced considerably in samples with gold electrodes. Conditioning by holding at room temperature for seven days at rotary pump pressure had little effect. The heterocharge originates in inhomogeneous polarization due to a spatially inhomogeneous distribution of permanent dipole molecules, probably acetophenone. The dipole concentration decreases in going from the electrodes towards the center of the samples, as a result of diffusion of the molecules in the opposite direction. The homocharge originates in electronic charge injection/extraction across the electrode/XLPE interfaces  相似文献   

19.
20.
The accumulation of space charge in XLPE (cross-linked polyethylene), cross-linked using DCP (dicumyl peroxide) or a silane-based grafting process, was studied via the LIPP (laser-induced-pressure-pulse) technique. Planar samples 0.5 mm thick were obtained from the XLPE insulation of power distribution cables. DC fields to 10 kV/mm were applied at temperatures in the range 20 to 90°C. Usually the DCP samples developed heterocharge, and the silane samples homocharge. However, the observed space charge densities were not very different. Nearly all of the charge accumulated within 100 μm of each electrode, with very little in the remainder of the volume. Both sample types showed a near-perfect inversion of the equilibrium space charge profiles on reversing the applied voltage polarity. This observation is explained in terms of charge injection at the electrodes, electron transfer between electrode and XLPE in either direction involving the same narrow `window' of combined donor and acceptor states in the insulator, centered on the Fermi level  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号