首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of coal size (0.73–1.03 mm), excess air ratio (1.0–1.4), operating bed temperature (750–900‡C), coal feeding rate (1–3 kg/h), and coal recycle rate (20–40 kg/h) on combustion efficiency, temperature profiles along the bed height and flue gas composition have been determined in a bubbling and circulating fluidized bed combustor (7.8 cm-ID x 2.6 m-high). Combustion efficiency increases with increasing excess air ratio and operating bed temperature and it decreases with increasing particle size in the bubbling and circulating fluidzing beds. In general, temperature profiles and combustion efficiency are more uniform and higher in a circulating bed than those in bubbling bed. Combustion efficiency also increases with increasing recycle rate of unburned coal in the circulating bed. The ratio of CO/CO2 of flue gas decreases with increasing bed temperature and excess air ratio, whereas the ratio of O2(CO + CO2) decreases with bed temperature in both bubbling and circulating fluidized beds.  相似文献   

2.
High temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed. Experiments on pulverized coal combustion in high temperature air from the circulating fluidized bed were carried out in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. The NO emission decreases with increasing the residence time of pulverized coal in the reducing zone, and the NO emission increases with excess air ratio, furnace temperature, coal mean size and oxygen concentration in high temperature air. The results also revealed that the co-existing of air-staging combustion with high temperature air is very effective to reduce nitrogen oxide emission for pulverized coal combustion in the down-fired combustor.  相似文献   

3.
The characteristics of emission and heat transfer coefficient in a pressurized fluidized bed combustor are investigated. The pressure of the combustor is fixed at 6 atm. and the combustion temperatures are set to 850, 900, and 950 °C. The gas velocities are 0.9, 1.1, and 1.3 m/s and the excess air ratios are 5, 10, and 20%. The desulfurization experiment is performed with limestone and dolomite and Ca/S mole ratios are 1,2, and 4. The coal used in the experiment is Cumnock coal from Australia. All experiments are executed at 2 m bed height. In this study, the combustion efficiency is higher than 99.8% through the experiments. The heat transfer coefficient affected by gas velocity, bed temperature and coal feed rate is between 550-800 W/m2 °C, which is higher than those of AFBC and CFBC. CO concentration with increasing freeboard temperature decreases from 100 ppm to 20 ppm. NOx concentration in flue gas is in the range of 5-130 ppm and increases with increasing excess air ratio. N2O concentration in flue gas decreases from 90 to 10 ppm when the bed temperature increases from 850 to 950 °C.  相似文献   

4.
Hydrodynamics in airlift loop section of petroleum coke combustor   总被引:2,自引:0,他引:2  
Based on the combustion characteristics of petroleum coke, a coupled gas-solid fluidized bed combustor is proposed in this work. The overall circulating system of the fluidized bed mainly consists of a dense-phase airlift loop section and a dilute-phase riser section. In different operating conditions, the particle flow behaviors in the airlift loop section were investigated systematically by using optical fiber probe. The experimental results show that the airlift loop section can be divided into four regions, namely, the draft tube, the annulus, the bottom region and the particle diffluence region, in which the average cross-sectional solids fraction and the particle velocity are different. The overall solids fraction difference between the draft tube and the annulus provides a driving force for particle circulation flow in the airlift loop section, and the driving force increases with increasing the superficial gas velocity in the draft tube. The ratio of the particle mass flux in the annulus to that in the riser ranges from 8 to 16. The particle circular velocity in the annulus also increases with increasing the superficial gas velocity in the draft tube. Moreover, a model about the particle circular velocity is established on the basis of energy equilibrium principle.  相似文献   

5.
Analysis of combustion efficiency in CFB coal combustors   总被引:1,自引:0,他引:1  
Afsin Gungor 《Fuel》2008,87(7):1083-1095
Fluidized bed technology is well known for its high combustion efficiency and is widely used in coal combustion. In this study, the combustor efficiency has been defined and investigated for CFB coal combustor based on the losses using a dynamic 2D model. The model is shown to agree well with the published data. The effect of operating parameters such as excess air ratio, bed operational velocity, coal particle diameter and combustor load and the effect of design variables such as bed height and bed diameter on the mean bed temperature, the overall CO emission and the combustion efficiency are analyzed for the small-scale of CFBC in the presently developed model. As a result of this analysis, it is observed that the combustion efficiency decreases with increasing excess air value. The combustion efficiency increases with the bed operational velocity. Increasing coal particle size results in higher combustion efficiency values. The coal feed rate has negative effect on the combustion efficiency. The combustor efficiency considerably increases with increasing combustor height and diameter if other parameters are kept unchanged.  相似文献   

6.
To understand vortexing fluidized bed combustor (VFBC) performances, an investigation was carried out in a 0.45 m diameter and 4.45 m height pilot scale VFBC. Rice husks, corn, and soybean were used as the biomass feedstock and silica sand serving as the bed material. The bubbling bed temperature was controlled by using water injected into the bed. The experimental results show that the excess air ratio is the dominant factor for combustion efficiency. The in-bed combustion proportion increases with the primary air flow rate and bed temperature, and decreases with the volatile/fixed carbon ratio. The stability constant is proposed to describe the inertia characteristics of the vortexing fluidized bed combustor. The experimental results indicate that the stability of the VFBC increases with bed weight and primary air flow rate, but decreases with bed temperature.  相似文献   

7.
The effects of gas velocities to draft tube (26.64–52.54 cm/s) and to annulus section (8.14–11.84 cm/s) on solid circulation rate and gas bypassing fractions were determined in a square internally circulating fluidized bed reactor with an orifice-type square draft tube. The solid circulation rate and gas bypassing fraction from the annulus section to the draft tube increase but gas bypassing fraction from the draft tube to the annulus section decreases with increasing gas velocity to the draft tube. With increasing gas velocity to the annulus section, the solid circulation rate and gas bypassing fraction from the draft tube to the annulus section increase but, gas bypassing fraction from the annulus section to the draft tube decreases. The solids circulation rate was correlated with the pressure drop across the orifice and the opening area ratio based on the orifice theory. The gas bypassing fraction was correlated with gas velocities to the fluidized and the moving beds. Based on the gas bypassing fraction data, the gas flow rates across the orifice were correlated with gas velocities to the fluidized and the moving beds, opening area ratio, particle size and solids height in the bed.  相似文献   

8.
王德武  卢春喜  严超宇 《化工学报》2010,61(9):2235-2242
针对催化汽油辅助反应器改质降烯烃技术,在一套提升管与气-固环流床层耦合反应器大型冷模实验装置上,研究了上部环流床层的流体力学特性。结果表明,在环流床层与提升管耦合操作的情况下,床层内颗粒环流存在两种推动力,分别为静压差推动力和颗粒喷射推动力;环隙与导流筒之间的整体平均固含率差随导流筒表观气速增加而增加,随颗粒外循环强度增加而降低;颗粒环流速度随导流筒表观气速和颗粒外循环强度增加而增加。通过对环流床层进行动量衡算,建立了提升管与环流床层耦合流动的数学模型,模型平均相对误差在15.95%以内。  相似文献   

9.
To produce low calorific value gas, Australian coal has been gasified with air and steam in a fluidized bed reactor (0.1 m-I.Dx1.6 m-high) at atmospheric pressure. The effects of fluidizing gas velocity (2–5 Uf/Umf), reaction temperature (750–900 °C), air/coal ratio (1.6-3.2), and steam/coal ratio (0.63–1.26) on gas composition, gas yield, gas calorific value of the product gas and carbon conversion have been determined. The calorific value and yield of the product gas, cold gas efficiency, and carbon conversion increase with increasing fluidization gas velocity and reaction temperature. With increasing air/coal ratio, carbon conversion, cold gas efficiency and yield of the product gas increase, but the calorific value of the product gas decreases. When steam/coal ratio is increased, cold gas efficiency, yield and calorific value of the product gas increase, but carbon conversion is little changed. Unburned carbon fraction of cyclone fine decreases with increasing fluidization gas velocity, reaction temperature and air/coal ratio, but is nearly constant with increasing steam/coal ratio. Overall carbon conversion decreases with increasing fluidization velocity and air/ coal ratio, but increases with increasing reaction temperature. The particle entrainment rate increases with increasing fluidization velocity, but decreases with increasing reaction temperature. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   

10.
The effects of orifice diameter in the draft tube, particle size, gas velocities and bed height on the circulation rate of solids and gas bypassing between the draft tube and annulus have been determined in an internally circulating fluidized bed (i.d., 0.3 m ; height, 2.5 m) with an orifice-type draft tube. A conical shape gas separator has been employed above the draft tube to facilitate the separation of gases from the two beds. The circulation rate of solids and the quantity of gas bypass from the annulus to draft tube show their minimums when the static bed height is around the bottom of the separator. The circulation rate of solids increases with an increase in orifice diameter in the draft tube. At fixed aeration to the annulus, gas bypassing from the draft tube to annulus sections decreases, whereas reverse gas bypassing from the annulus to the draft tube increases with increasing the inlet gas velocity to the draft tube. The obtained solids circulation rate has been correlated by a relationship developed for the cocurrent flow of gas and solid through the orifice.  相似文献   

11.
A new technique of achieving high temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed (CFB). Experiments on pulverized coal combustion in high temperature air from the CFB were made in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. High temperature air with lower oxygen concentrations can be achieved steadily and continuously by combustion in the circulating fluidized bed. Pulverized coal combustion in high temperature air shows a uniform temperature profile along the axis of the down-fired combustor and the combustion efficiency is 99.8%. The NOx emission is 390 mg/m3, 13% lower than the regulation for thermal power plants in China. The HCN and NH3 emissions, as well as N2O, are about zero in the exhaust.  相似文献   

12.
A well-designed CFBC can burn coal with high efficiency and within acceptable levels of gaseous emissions. In this theoretical study effects of operational parameters on combustion efficiency and the pollutants emitted have been estimated using a developed dynamic 2D (two-dimensional) model for CFBCs. Model simulations have been carried out to examine the effect of different operational parameters such as excess air and gas inlet pressure and coal particle size on bed temperature, the overall CO, NOx and SO2 emissions and combustion efficiency from a small-scale CFBC. It has been observed that increasing excess air ratio causes fluidized bed temperature decrease and CO emission increase. Coal particle size has more significant effect on CO emissions than the gas inlet pressure at the entrance to fluidized bed. Increasing excess air ratio leads to decreasing SO2 and NOx emissions. The gas inlet pressure at the entrance to fluidized bed has a more significant effect on NOx emission than the coal particle size. Increasing excess air causes decreasing combustion efficiency. The gas inlet pressure has more pronounced effect on combustion efficiency than the coal particle size, particularly at higher excess air ratios. The developed model is also validated in terms of combustion efficiency with experimental literature data obtained from 300 kW laboratory scale test unit. The present theoretical study also confirms that CFB combustion allows clean and efficient combustion of coal.  相似文献   

13.
The kinetic parameters (activation energy, pre‐exponential factor and reaction order) of volatile and char of deinking sludge are determined by thermo‐gravimetric analysis. From the Arrhenius plot, the activation energy and the pre‐exponential factor of char are determined. The reaction order is found to be 0.7 with respect to oxygen partial pressures of 507 – 3040 Pa. The effects of riser gas velocity, solid feeding rate and annulus air on combustion efficiency have been determined in an internally circulating fluidized bed (ICFB). The combustion efficiency decreases with increasing riser gas velocity and solid feeding rate, while it increases with increasing annulus air. High combustion efficiency is obtained when the annulus air is injected.  相似文献   

14.
A small-size spouted bed with a porous draft tube was employed to obtain hydrodynamic data of binary mixtures of glass beads for a range of operating conditions and design factors. In this case, a small amount of finer particles was added mostly to the large majority of coarser particles. Under this condition, minimum spouting velocity, bed pressure drop, hold-up of solid particles within a draft tube, gas flow rate through the annulus and solids circulation rate were determined by changing the total gas flow rate and the mass fraction of finer particles as operating parameters, and by changing the height of the entrainment zone and the draft tube diameter as geometric parameters. The results show that the gas flow rate through the annulus increases by increasing the distance between the gas inlet nozzle and the bottom of the draft tube, that is, the height of the entrainment zone, but decreases with increasing draft tube diameter and mass fraction of finer particles. The porous draft tube shows a higher gas flow rate through the annulus than the non-porous draft tube, particularly in the case of the low height of the entrainment zone. The solids circulation rate increases with increasing gas velocity, the height of the entrainment zone and the porous draft tube diameter. Moreover, the porous draft tube leads to a higher solids circulation rate than the non-porous draft tube.  相似文献   

15.
Hüseyin Topal  Ali Durmaz 《Fuel》2003,82(9):1049-1056
In this study, a circulating fluidized bed of 125 mm diameter and 1800 mm height was used to find the combustion characteristics of olive cake (OC) produced in Turkey. A lignite coal that is most widely used in Turkey was also burned in the same combustor. The combustion experiments were carried out with various excess air ratios. The excess air ratio, λ, has been changed between 1.1 and 2.16. Temperature distribution along the bed was measured with thermocouples. On-line concentrations of O2, SO2, CO2, CO, NOx and total hydrocarbons were measured in the flue gas. Combustion efficiencies of OC and lignite coal are calculated, and the optimum conditions for operating parameters are discussed. The combustion efficiency of OC changes between 82.25 and 98.66% depending on the excess air ratio. There is a sharp decrease observed in the combustion losses due to hydrocarbons and CO as the excess air ratio increases. The minimum emissions are observed at λ=1.35. Combustion losses due to unburned carbon in the bed material do not exceed 1.4 wt% for OC and 1.85 wt% for coal. The combustion efficiency for coal changes between 82.25 and 98.66% for various excess air ratios used in the study. The ash analysis for OC is carried out to find the suitability of OC ash to be used as fertilizer. The ash does not contain any hazardous metal.  相似文献   

16.
In order to investigate the combustion characteristics of a two-stage swirl-flow fluidized bed combustor, combustion experiments of low-grade anthracite coal were performed. Experimental parameters were the fluidizing air velocity, coal feed rates, bed temperature, stoichiometric air ratio, swirl nozzle diameter and rotational diameter. The experimental results showed that, due to the swirl flow, the elutriation rates of fines were lower than those of the single-stage fluidized bed combustor. The combustible contents of the ash in the outflow streams were also reduced. Therefore, the combustion efficiency of the two-stage swirl-flow fluidized bed combustor was 20% greater than that of the single-stage fluidized bed combustor under the same operating conditions.  相似文献   

17.
针对开发适用于化学气相沉积反应动力学研究的微型流化床反应分析仪的应用需求,研究了外径为30 mm的内循环微型流化床中气固流动特性,具体考察了中心射流管伸入高度、内导流管直径和颗粒装载量对实现固体物料内循环的最小操作气速和导流管与环隙区间窜气的影响。结果表明,随着射流管伸入高度的增大,实现颗粒内循环流动的最小操作气速变大;存在最优的导流管直径(20 mm),使得实现颗粒环流的最小操作气速较小;增大颗粒装载量有利于降低颗粒内循环的最小操作气速。通过检测示踪气体在环隙区内的质谱信号,发现在所考察的参数范围内,反应器底部不存在导流管区向环隙区的窜气;在反应器上部,由于颗粒对气体的夹带,环隙区上部总能检测到示踪气体,且窜气特性随操作气速的增大而增强。研究结果可为设计适用于化学气相沉积反应的内循环微型流化床反应器提供参考。  相似文献   

18.
Effects of superficial gas velocities to a draft tube, to an annulus section and particle size on the solid circulation rate (G,) have been determined in an internally circulating fluidized bed (0.28 m I.D. × 2m high) with an orifice type draft tube. The solid circulation rate from the draft tube to an annulus section increases with increasing gas velocities to the draft tube(U d ) and annulus section (Ua) and consequent increase in pressure drop across the orifice (ΔPor). However, the values ofG s decrease by 7–21% with increasing particle size from 86 to 288 μm. The pressure drop across the orifice increases with increasingU d andU a . However, ΔPor decreases by 5–23% with increasing particle size. To predictG s in an internally circulating fluidized bed, a correlation is proposed as a function of ΔPor This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement Korea University.  相似文献   

19.
串行流化床煤气化试验   总被引:3,自引:3,他引:0  
吴家桦  沈来宏  肖军  卢海勇  王雷 《化工学报》2008,59(8):2103-2110
针对串行流化床煤气化技术特点,以水蒸气为气化剂,在串行流化床试验装置上进行煤气化特性的试验研究,考察了气化反应器温度、蒸汽煤比对煤气组成、热值、冷煤气效率和碳转化率的影响。结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该煤气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的升高、蒸汽煤比的增加,煤气热值和冷煤气效率均会提高,但对碳转化率影响有所不同。在试验阶段获得的最高煤气热值为6.9 MJ•m-3,冷煤气效率为68%,碳转化率为92%。  相似文献   

20.
An internally circulating fluidized bed reactor (ICFBR) was used as a desulfurization apparatus in this study. The height of the bed was 2.5 m, and the inner diameter was 9 cm. The bed materials were calcium sorbent and silica sand. The effects of the operating parameters of the flue gas desulfurization including relative humidity, particle size of the calcium sorbent, inlet concentration of SO2, difference between the superficial gas velocities in the draft tube and the annulus, and superficial gas velocity in the draft tube on SO2 removal efficiency (RE) were investigated. It was found that when the relative humidity (RH) was varied from 40% to 80%, the steady state RE had a largest value of approximately 15% when the relative humidity was 60%. When RH = 50%, 60% and 70%, RE decreased initially and then increased. After that RE decreased again until a steady state was reached. In addition, RE decreased with increasing calcium particle size or inlet SO2 concentration. A larger difference between the superficial gas velocities in the draft tube and the annulus had a higher RE resulting from increasing reactivity of the calcium sorbent caused by a higher attrition rate. Moreover, a higher attrition rate had a higher total volume of the flue gas treated. Finally, a model to predict the steady state RE in ICFBR was proposed. It assumed that the draft tube section was a bubbling fluidized bed while the annulus section was a moving bed. In addition, the effects of the calcium sorbent conversion, attrition rate and gas-bypassing fractions on RE were also taken into account in this model. It was found that the values of RE predicted by this model agreed with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号