首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Free-standing La2Zr2O7 coatings were obtained by plasma spraying, using an amorphous La-O-Zr precursor as the feedstock. The La-O-Zr precursor powder was prepared by coprecipitation. During thermal spraying, the formation of coatings can be regarded as a joint process of melting-solidification, thermal decomposition, and crystallization. The time required for crystal growth was significantly shortened during spraying. Consequently, the average grain size of coatings was approximately 200 nm, with a narrow distribution (100-500 nm). Coatings prepared by this method show better thermophysical properties than those prepared with crystalline La2Zr2O7 powder as the feedstock. The thermal conductivity of the as-sprayed coating was approximately 0.36-0.47 W/m K and the average coefficient of thermal expansion (CTE) is 11.1 × 10?6/K.  相似文献   

2.
In this study, molybdenum disilicide (MoSi2) coatings were fabricated by vacuum plasma spraying technology. Their morphology, composition, and microstructure characteristics were intensively investigated. The oxidation behavior of MoSi2 coatings was also explored. The results show that the MoSi2 coatings are compact with porosity less than 5%. Their microstructure exhibits typical lamellar character and is mainly composed of tetragonal and hexagonal MoSi2 phases. A small amount of tetragonal Mo5Si3 phase is randomly distributed in the MoSi2 matrix. A rapid weight gain is found between 300 and 800 °C. The MoSi2 coatings exhibit excellent oxidation-resistant properties at temperatures between 1300 and 1500 °C, which results from the continuous dense glassy SiO2 film formed on their surface. A thick layer composed of Mo5Si3 is found to be present under the SiO2 film for the MoSi2 coatings treated at 1700 °C, suggesting that the phenomenon of continuous oxidation took place.  相似文献   

3.
Chromium carbide-based thermally sprayed coatings are widely used for high temperature wear applications (typical temperature range from 540 to 900 °C). In these extreme environments at those temperatures, several phenomena will degrade, oxidize, and change the microstructure of the coatings, thereby affecting their wear behavior. Although it can be easily conceived that the Cr3C2-NiCr coating microstructure evolution after high temperature exposure will depend on the as-sprayed microstructure and spraying parameters, very little has been done in this regard. This study intends to develop a better understanding of the effect of spraying parameters on the resulting chromium carbide coating microstructure after high temperature operation and high temperature sliding wear properties. The microstructures of different coatings produced from two morphologies of Cr3C2-NiCr powders and under a window of in-flight particle temperature and velocity values were characterized through x-ray diffraction and scanning electron microscopy. Sliding wear at 800 °C was performed and the wear behavior correlated with the spraying parameters and coating microstructure. Vickers microhardness (300 gf) of the coatings before and after sliding wear was also measured.  相似文献   

4.
Ni/Al alloy powders were synthesized by ball milling of nickel-aluminum powder mixture with a Ni/Al atomic ratio of 1:1. Ni/Al alloy coating was deposited by cold spraying using N2 as accelerating gas. NiAl intermetallic compound was evolved in situ through postspray annealing treatment of cold-sprayed Ni/Al alloy coating. The effect of annealing temperature on the phase transformation behavior from Ni/Al mechanical alloy to intermetallics was investigated. The microstructure of the mechanically alloying Ni/Al powder and NiAl coatings was characterized by scanning electron microscopy and x-ray diffraction analysis. The results show that a dense Ni/Al alloy coating can be successfully deposited by cold spraying using the mechanically alloyed powder as feedstocks. The as-sprayed alloy coating exhibited a laminated microstructure retained from the mechanically alloying powder. The annealing of the subsequent Ni/Al alloy coating at a temperature higher than 850 °C leads to complete transformation from Ni/Al alloy to NiAl intermetallic compound.  相似文献   

5.
Yttria-stabilized zirconia (YSZ) is the state-of-the-art material for the top coat of thermal barrier coatings. To increase the efficiency and lifetime of gas turbines, the integration of MoSi2 as a healing material was proposed. A new method of manufacture was explored in order to enable the spraying of a homogeneous mixed layer of YSZ and MoSi2. As the chemical and physical properties of these powders are very different, they require contrasting process conditions. Due to the evaporation of Si from MoSi2 at spraying conditions suitable for YSZ, more moderate conditions and a shorter time of flight are required for depositing MoSi2. At the same time, the spraying conditions still need to be sufficient for melting the YSZ particles in order to produce a coating. To obtain a homogeneous mixture, both conditions can be matched using an injection system that allows powder injection at two different locations of the plasma jet. Two-color pyrometry during flight (DPV-2000, Tecnar) was used to monitor the actual particle temperature. By optimizing the injection point for the MoSi2, a mixed coating was obtained without decomposition of the MoSi2, which has been analyzed by means of XRD and SEM.  相似文献   

6.
WC-(W,Cr)2C-Ni coatings were prepared by atmospheric plasma spraying (APS) with different spraying powers. The effect of spraying power on microstructure, phase composition, hardness, fracture toughness, and oscillating dry friction and wear behaviors of the coatings were studied. Simultaneously, the microstructure and properties of the as-sprayed coatings were compared with those of WC-17Co coating prepared under the optimal spraying power. It was found that spraying power had significant effect on the molten degree of feedstock powder and phase composition as well as microstructure and properties of WC-(W,Cr)2C-Ni coatings. WC-(W,Cr)2C-Ni coating deposited at a moderate spraying power of 22.5?kW had the highest fracture toughness and the best wear resistance. WC-17Co coating obtained under the moderate spraying power had poor fracture toughness and wear resistance. Moreover, the four kinds of coatings were all dominated by subsurface cracking and removal of materials when sliding against Si3N4 ball under unlubricated conditions.  相似文献   

7.
The primary mullitized andalusite powders were spray-dried and heat-treated to improve sprayable capability. Then, mullite coating was deposited by atmospheric plasma spraying and heat treatment was contributed to recrystallization of the amorphous phase present in the as-sprayed mullite coating. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phase composition of mullite coating. Meanwhile, the phase transition temperature, enthalpy, and specific heat capacity of as-sprayed coatings as well as recrystallized mullite coatings were determined by means of differential scanning calorimetry (DSC). Moreover, tribological properties of as-sprayed coating were investigated by SRV-IV friction and wear tester from 200 to 800 °C. It has been found that the as-sprayed coating possesses good thermal stability. DSC analysis reveals that recrystallization of the glassy phase present in the mullite coating occurs at about 980 °C. The friction coefficient of mullite coating was gradually increased from 0.82 at 200 °C to the highest value of 1.12 at 800 °C, while wear rates of the coating were at the order of 10?5 mm3/Nm. The as-sprayed coating suffered the most severe wear at 800 °C. The observed wear mechanisms were mainly abrasive wear, brittle fracture, and pulling-out of splats.  相似文献   

8.
Cold-gas dynamic spraying (“cold spraying”) was used to deposit aluminum-alumina (Al-Al2O3) metal-matrix composite (MMC) coatings onto 6061 Al alloy. The powders consisted of ?45 μm commercially pure Al that was admixed with either 10 μm or agglomerated 20 nm Al2O3 in weight fractions of 25, 50, 75, 90, and 95 wt.%. Scanning electron microscopy (SEM), Vickers microhardness testing, and image analysis were conducted to determine the microstructure, properties, and the volume fractions of reinforcing particles in the coatings, which was then converted to weight fractions. As the weight fraction of the Al2O3 in the coatings increased, the hardness values of the MMC coatings increased. A maximum hardness of 96 ± 10 HV0.2 was observed for the MMC coating that contained the agglomerated 20 nm Al2O3 particles, while a maximum hardness of 85 ± 24 HV0.2 was observed for the coatings with the 10 μm Al2O3 particles. The slight increase in hardness of the coating containing the agglomerated 20 nm Al2O3 particles occurred in a coating of Al2O3 content that was lower than that in the coating that contained the 10 μm reinforcing Al2O3 particles. The increased hardness of the MMC coatings that contained the agglomerated 20 nm Al2O3 particles and at lower reinforcing particle content was attributed to the increased spreading of the nanoagglomerated particles in the coating, which increased load-sharing and reinforcement capability of the particles. These results suggest that the use of nanoagglomerated, reinforcing hard-phase particles in cold-sprayed MMC coatings may be a more efficient alternative to the use of conventional micronsized reinforcing particles.  相似文献   

9.
In thermally sprayed coatings, nano-sized features of the microstructure may be either inherited from the nanostructured agglomerates of the feedstock powder or form as a result of rapid cooling of molten particles upon deposition. Applying a process of the computer-controlled detonation spraying (CCDS) to Ti3SiC2-Cu composite powders produced by high-energy mechanical milling, we show that both routes are possible depending on the spraying conditions. When the nanostructure of the Ti3SiC2-Cu coating is inherited from the feedstock powder—under very mild conditions of detonation spraying, which exclude melting, so is the phase composition of the coating. In higher-temperature conditions of spraying, a significant fraction of the copper matrix melts and the interaction between Ti3SiC2 and Cu occurs. The TiC x -Cu(Si) coatings that form show crystallites of both phases in the nano-range. In this case, rapid solidification of the molten fraction of the particles is responsible for the formation of the coatings with a nanostructured matrix. Due to the flexibility of the CCDS process, conditions of spraying were found such that a composite coating with very fine crystallites of the Cu(Si) matrix (30 nm) and a hardness of 273 HV could be obtained.  相似文献   

10.
High Velocity Oxy-Fuel has been utilized to spray coatings from Ti2AlC (MAXTHAL 211®) powders. X-ray diffraction showed that the coatings consist predominantly of Ti2AlC with inclusions of the phases Ti3AlC2, TiC, and Al-Ti alloys. The fraction of Ti2AlC in coatings sprayed with a powder size of 38 μm was found to increase with decreasing power of the spraying flame as controlled by the total gas flow of H2 and O2. A more coarse powder (56 μm) is less sensitive to the total gas flow and retains higher volume fraction of MAX-phase in the coatings, however, at the expense of increasing porosity. X-ray pole figure measurements showed a preferred crystal orientation in the coatings with the Ti2AlC (000l) planes aligned to the substrate surface. Bending tests show a good adhesion to stainless steel substrates and indentation yields a hardness of 3-5 GPa for the coatings sprayed with a powder size of 38 μm.  相似文献   

11.
Yttrium oxide (Y2O3) coatings have been prepared by axial suspension plasma spraying with fine powders. It is clarified that the coatings have high hardness, low porosity, high erosion resistance against CF4 -containing plasma and retention of smooth eroded surface. This suggests that the axial suspension plasma spraying of Y2O3 is applicable to fabricating equipment for electronic devices, such as dry etching. Surface morphologies of the slurry coatings with splats are similar to conventional plasma-sprayed Y2O3 coatings, identified from microstructural analysis. Dense coating structures with no lamellar boundaries have been seen, which is apparently different from the conventional coatings. It has also been found that crystal structure of the suspension coatings mainly composed of metastable monoclinic phase, whereas the powders and the conventional plasma spray coatings have stable cubic phase. Mechanism of coating formation by plasma spraying with fine powder slurries is discussed based on the results.  相似文献   

12.
MoSi2 - 0, 15.3, 22, and 29.3 at.% Al coatings were prepared on the nickel-based super-alloy substrates by electro-thermal explosion ultrahigh speed spraying technology. The analysis showed that the coatings had fine microstructure with grain sizes ranging from 0.5 to 2 μm. The bonding between coating and substrate was typically metallurgical cohesion. The oxidation resistance of the coating was further studied at 1100 °C in air. Al alloyed in MoSi2 coatings increased the oxidation resistance of the coatings, and the oxidation resistance of MoSi2-15.3 at.% Al coating was higher than the other two MoSi2–Al coatings. This suggested the oxidation resistance might have close relations to the obtained grain size.  相似文献   

13.
Molybdenum disilicide (MoSi2)-based composite coating using nano-ZrO2 as an additive was deposited on a nickel-based alloy by air plasma spraying, and the phase composition and microstructure of the composite coating were characterized by x-ray diffraction (XRD) and scanning electron microscope. The high-temperature abrasive wear properties of the ZrO2-MoSi2 composite coating were compared with the pure MoSi2 coating at 1100 °C. The XRD results show that there exists mutual transformation between T-MoSi2 and H-MoSi2 phase and part of Mo-rich phases are formed because of oxidization during the spraying processing. The addition of nano-ZrO2 could improve the adhesion between the splats, prevent cracking along the interface between the splats, and purify the boundaries. The ZrO2-MoSi2 composite coating exhibits improved wear resistance compared with the pure MoSi2 coating. The addition of nano-ZrO2 could effectively mitigate the adhesion wear and brittle delamination of the MoSi2 coating.  相似文献   

14.
AZ91D/SiCp composite coatings were fabricated on AZ31 magnesium alloy substrates using cold spraying. The effects of SiC volume fraction and particle size on the deposition behavior, microhardness, and bonding strength of coatings were studied. The mean sizes of SiC particles tested were 4, 14, and 27 μm. The results show that fine SiC particles (d 0.5 = 4 μm) are difficult to be deposited due to the bow shock effect. The volume fraction of SiC particles in composite coatings increases with the increasing SiC particle size. The microhardness and bonding strength of composite coatings also show increases compared with AZ91D coatings. The volume fractions of SiC particles in the original powder were set at 15, 30, 45, and 60 vol.%. The corresponding contents in composite coatings are increased to 19, 27, 37, and 51 vol.%, respectively. The microhardness of composite coatings also increases as the volume fraction of SiC particles increases.  相似文献   

15.
利用火焰喷涂技术喷涂自制的气雾化合金粉末取代非晶粉末,制备了NiFeBSiNb非晶纳米晶涂层。分别对粉末和涂层的微观组织结构和热力学性能进行了表征。结果表明,自制的合金粉末球形度较好,大多为球形或椭球形;主要为晶体结构,由Nb2Ni21B6晶体相和(Ni,Fe)23B6固溶体组成。而经过火焰喷涂制备的涂层,形成了非晶相和纳米晶相。通过公式计算此合金体系粉末和涂层形成非晶相的临界冷却速率分别为6.01×105K/s和4.56×103K/s,解释了在粉末制备过程中较难形成非晶相而喷涂过程中形成非晶结构比较容易。对涂层的摩擦磨损性能进行了测试,涂层摩擦系数仅为0.17,具有优异的耐磨性能。  相似文献   

16.
The mechanical and tribological behavior and microstructural evolutions of the Ni(Al)-reinforced nanocomposite plasma spray coatings were studied. At first, the feedstock Ni(Al)-15 wt.% (Al2O3-13% TiO2) nanocomposite powders were prepared using low-energy mechanical milling of the pure Ni and Al powders as well as Al2O3-13% TiO2 nanoparticle mixtures. The characteristics of the powder particles and the prepared coatings depending on their microstructures were examined in detail. The results showed that the feedstock powders after milling contained only α-Ni solid solution with no trace of the intermetallic phase. However, under the air plasma spraying conditions, the NiAl intermetallic phase in the α-Ni solid solution matrix appeared. The lack of nickel aluminide formation during low-energy ball milling is beneficial hence, the exothermic reaction can occur between Ni and Al during plasma spraying, improving the adhesive strength of the nanocomposite coatings. The results also indicated that the microhardness of the α-Ni phase was 3.91 ± 0.23 GPa and the NiAl intermetallic phase had a mean microhardness of 5.69 ± 0.12 GPa. The high microhardness of the nanocomposite coatings must be due to the presence of the reinforcing nanoparticles. Due to the improvement in mechanical properties, the Ni(Al) nanocomposite coatings showed significant modifications in wear resistance with low frictional coefficient.  相似文献   

17.
In this study, three groups of thermal barrier coatings (TBCs) samples were remelted by CO2 laser with different laser energy densities (1, 5 and 10 J/mm2) to seal the surface of yttria-stabilized zirconia (YSZ) coatings. Microscopic observations showed that the cracks size and the remelted depth in YSZ coatings increased. A ~ 50-μm-thick dense layer was formed on the surface of YSZ coating in samples with 1 J/mm2 energy density. Microindentation tests showed that the Vickers hardness of YSZ coatings increases with the increase in laser energy density. After isothermal oxidation at 1200 °C for 200 h, thinner thermally growth oxides were found in laser remelted YSZ samples under energy density of 1 J/mm2 (6.32 ± 0.28 μm). Cyclic oxidation results showed that the weight gain per unit area of low energy density laser remelted TBCs was smaller than that of the high energy density laser remelted and as-sprayed TBCs.  相似文献   

18.
In this work, MoSi2, MoSi2-20 vol.% ZrO2, MoSi2-40 vol.% ZrO2 (denoted, respectively, as MZ0, MZ2, and MZ4) coatings were fabricated by vacuum plasma spraying technology. The oxidation behavior of the coatings was examined at 500, 1200, and 1500 °C, respectively. Some basic properties of the coatings, including microhardness, porosity, and surface roughness were characterized. The tests at 500 °C showed that the pest oxidation phenomenon of MoSi2 coatings was restrained by the addition of ZrO2. The MZ2 coating exhibited excellent oxidation-resistant behavior both at 1200 and 1500 °C. However, the MZ4 coating presented the impaired oxidation-resistant behavior at 1500 °C, though the comparable oxidation property at 1200 °C was still obtained.  相似文献   

19.
The coating formation in a kinetic spray process mainly depends on the impact of inflight particles at a high velocity. The plastic deformation at the impact interface would disrupt the native oxide scale on the particle and the substrate to generate the intimate contact of the atomic structures. Accordingly, it poses a challenge in producing ceramic coating during kinetic spray because of the lack of plasticity of ceramic powders at room temperature. In this study, we proposed to prepare ZrO2 ceramic coatings using partially amorphized powder with nanometer size in the kinetic spray process. To prepare the powder for the use of the kinetic spray, the amorphization and grain refinement of ZrO2 powder in mechanical ball milling were studied. The results showed that the amorphization and grain refinement were improved because of the formation of solid solution when the CeO2 agent was added. Subsequently, a nearly spherical powder was achieved via spray drying using the milled powders. The plasticity of the milled powders was tested in the kinetic spray process using Nitrogen as process gas. A dense ZrO2-CeO2 coating with a thickness of 50 μm was formed, whereas spraying milled ZrO2 powder can only lead to an inhomogeneous dispersion of the destructible particles on the surface of the substrate.  相似文献   

20.
Thermal spraying of fine feedstock powders allow the deposition of cermet coatings with significantly improved characteristics and is currently of great interest in science and industry. However, due to the high surface to volume ratio and the low specific weight, fine particles are not only difficult to spray but also show a poor flowability in the feeding process. In order to process fine powders reliably and to preserve the fine structure of the feedstock material in the final coating morphology, the use of novel thermal spray equipment as well as a thorough selection and optimization of the process parameters are fundamentally required. In this study, HVOF spray experiments have been conducted to manufacture fine structured, wear-resistant cermet coatings using fine 75Cr3C2-25(Ni20Cr) powders (?8 + 2 μm). Statistical design of experiments (DOE) has been utilized to identify the most relevant process parameters with their linear, quadratic and interaction effects using Plackett-Burman, Fractional-Factorial and Central Composite designs to model the deposition efficiency of the process and the majorly important coating properties: roughness, hardness and porosity. The concept of desirability functions and the desirability index have been applied to combine these response variables in order to find a process parameter combination that yields either optimum results for all responses, or at least the best possible compromise. Verification experiments in the so found optimum obtained very satisfying or even excellent results. The coatings featured an average microhardness of 1004 HV 0.1, a roughness Ra = 1.9 μm and a porosity of 1.7%. In addition, a high deposition efficiency of 71% could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号