首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
回火处理对铸造高速钢轧辊耐磨性的影响   总被引:1,自引:1,他引:0  
通过销盘磨损试验,研究了在两体磨损条件下,两种高速钢轧辊材料在不同回火条件下的抗磨损性能.结果表明,淬火温度较低时,高速钢无回火二次硬化现象;而淬火温度较高时,淬火组织中残留奥氏体增多,回火冷却时转变为马氏体,使钢获得硬化.普通高速钢经1050 ℃淬火+530~560 ℃回火后,耐磨性好,用钛和稀土镁合金处理的高速钢经1040℃淬火+520~540 ℃回火后,耐磨性好.相同磨损条件下,钛和稀土镁合金处理高速钢的磨损量一般低于普通高速钢.  相似文献   

2.
热处理工艺对高速钢轧辊组织和性能的影响   总被引:1,自引:1,他引:1  
研究了淬火温度、冷却方式、回火温度和回火次数对高速钢轧辊组织和性能的影响。结果表明,空冷的高速钢轧辊淬透性差,油冷的高速钢轧辊易出现裂纹,盐冷的高速钢轧辊具有优良的淬透性,不易出现裂纹,辊面硬度高,硬度均匀性好,耐磨性好。  相似文献   

3.
杨顺贞  唐建永  吕均益  刘翠英 《热加工工艺》2012,41(12):181-183,186
采用不同温度对1050℃油冷淬火后的1Cr13不锈钢进行回火处理,然后对试样进行力学性能检测和显微组织分析。结果表明:随回火温度的升高马氏体组织不断分解,当温度高于450℃时,合金碳化物开始沿晶界析出,当温度达到600℃以上时,马氏体组织转变为索氏体组织,合金碳化物已呈现弥散分布,并开始长大、球化;显微组织的变化导致其力学性能也出现较大变化,随回火温度的升高,其硬度和抗拉强度降低,但其冲击韧度显著提高;1050℃油淬+(650~750)℃空冷回火时可以获得良好的综合力学性能。  相似文献   

4.
采用拉伸试验、冲击试验、硬度试验和显微组织分析等方法研究了淬火温度对复合模具钢基材60Si2Mn组织及力学性能的影响。结果表明:150℃低温回火时,随淬火温度的升高,各项力学性能都有所提高,当与高碳高铬钢复合时,可采用低淬+低回的热处理工艺,即1050℃淬火+150℃回火;550℃高温回火时,随淬火温度的升高,虽然韧性略有下降,但硬度与抗拉强度逐渐升高,当与高速钢等复合时,可采用高淬+高回的热处理工艺,即1150℃淬火+550℃回火。  相似文献   

5.
研究了淬火温度、淬火冷却方式和回火温度对高铬铸铁轧辊组织和性能的影响.结果表明,油冷条件下,淬火温度低于1000℃,随着淬火温度升高,硬度升高,随后硬度反而下降,雾冷和空冷条件下,淬火温度对硬度的影响规律与油冷时相似,获得最高硬度的淬火温度超过油冷时的淬火温度,达到1025℃.回火温度低于500℃时,高铬铸铁轧辊硬度变化不明显,超过575℃,硬度明显下降,高铬铸铁轧辊在450℃回火4小时,具有良好的综合力学性能和优异的耐磨性.  相似文献   

6.
蒋志强  符寒光 《金属热处理》2005,30(Z1):305-309
研究了淬火温度、淬火冷却方式和回火温度对高铬铸铁轧辊组织和性能的影响.结果表明,油冷条件下,淬火温度低于1000℃,随着淬火温度升高,硬度升高,随后硬度反而下降,雾冷和空冷条件下,淬火温度对硬度的影响规律与油冷时相似,获得最高硬度的淬火温度超过油冷时的淬火温度,达到1025℃.回火温度低于500℃时,高铬铸铁轧辊硬度变化不明显,超过575℃,硬度明显下降,高铬铸铁轧辊在450℃回火4小时,具有良好的综合力学性能和优异的耐磨性.  相似文献   

7.
在测试了高硼高速钢轧辊材料临界点和等温转变曲线(TTT)的基础上,借助金相显微镜、扫描电镜、X衍射分析、拉伸试验、冲击试验和硬度试验等手段,研究了淬火处理对高硼高速钢轧辊材料组织与性能的影响.结果表明,高硼高速钢轧辊材料具有很好的淬透性,淬火后易获得高硬度的马氏体组织,且碳硼化合物呈孤立分布.淬火温度超过1050℃后,残留奥氏体增多,硬度反而下降.随着淬火温度升高,高硼高速钢的抗拉强度和冲击韧性提高,超过1050℃,抗拉强度的变化不明显.高硼高速钢在1050℃左右淬火,具有优良的综合性能.  相似文献   

8.
利用金相显微镜、洛氏硬度计等方法,研究了淬回火工艺对3.4wt%C高碳高铬铸铁组织及硬度的影响。结果表明:随淬火温度在960~1100℃逐步升高,基体由铸态的奥氏体转变为马氏体及残余奥氏体,一次碳化物及共晶碳化物未发生转变,二次碳化物逐渐减少,残余奥氏体逐渐增多;硬度先升高后降低,在淬火温度为1050℃时,硬度达到最高值64 HRC。随回火温度在450~650℃升高,基体组织由回火马氏体逐渐转变为回火索氏体,二次碳化物增多粗化,硬度逐步降低;最佳热处理工艺为1050℃/1 h空淬+510℃/1 h空冷回火,试样综合性能较好。  相似文献   

9.
通过比较分析了含Nb高速钢离心铸造轧辊不同温度淬火后的碳化物、残余奥氏体及硬度变化规律,获得最佳的淬火热处理工艺。结果表明:随着淬火温度的升高,晶粒度降低,且在淬火温度超过1100℃时,晶粒度下降明显。随着淬火温度的升高,碳化物不断溶解,当淬火温度升至1150℃时,碳化物量含量最低,降至5.7%,残余奥氏体量增加至37.6%。硬度随着淬火温度的升高先上升后下降,当淬火温度为1050℃时,硬度最高,为63.6 HRC。热处理后的碳化物类型主要为颗粒状的MC和片层状M_2C。综合比较,淬火温度控制在1050℃为宜。  相似文献   

10.
采用不同淬回火工艺系统地研究了一种高碳高铬马氏体刀具用钢—SIMR的热处理工艺和微观组织,通过XRD、SEM和TEM等表征方法,分析测试了不同淬火温度和回火温度下SIMR刀具用钢的微观组织、碳化物形貌与分布和显微硬度等,获得了SIMR的最佳热处理工艺。结果表明,SIMR刀具用钢的晶粒尺寸随着淬火温度的升高而逐渐增大,冶炼凝固过程中析出的富铬M7C3型一次碳化物随着淬火温度的提高而逐渐回溶,显微硬度总体上呈现先升高后降低的趋势,回火温度在150~300 ℃间,SIMR刀具用钢的最佳热处理工艺为在1050 ℃淬火处理20 min,油冷,然后在150 ℃回火处理90 min,空冷。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号