首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg-doped sialon (Mgm/2Si12−m−nAlm+nOnN16−n) ceramics with different compositions of m = 2n = 0.6, 0.84, 1.0, 1.2, 1.6 were hot pressed at 1850 °C for 1 h. Phase assemblage, microstructure, mechanical and optical properties of these samples were investigated. All samples achieved/approached full densification. However, the densification of Mg-doped sialon ceramics with higher MgO/AlN content becomes more difficult. Additionally, the anisotropic growth of β-sialon grains was significantly inhibited. The unique characteristics of Mg-doped sialon ceramics intrinsically derive from the formation of Mg-containing AlN polytypoids, which consumed most of the high-temperature liquid. Furthermore, their high stability at high temperatures accounts for the difficulty in preparing single-phase Mg-α-sialon., The hardness of these samples gradually increases while indentation fracture toughness gradually decreases with increasing m = 2n value. Due to little residual glassy phase, high infrared transparency/translucency was more readily achieved in Mg-doped sialon. The m = 1.2 sample possesses the maximum transmittance of ∼50% at ∼2 μm.  相似文献   

2.
《Ceramics International》2021,47(2):2255-2260
This study firstly developed Hf1-xVxB2 (x = 0, 0.01, 0.02, 0.05) powders, which were derived from borothermal reduction of HfO2 and V2O5 with boron. The results revealed that significantly refined Hf1-xVxB2 powders (0.51 μm) could be obtained by solid solution of VB2, and x ≥ 0.05 was a premise. However, as the content of V-substitution for Hf increased, Hf1-xVxB2 ceramics sintered by spark plasma sintering at 2000 °C only displayed a slight densification improvement, which was attributed to the grain coarsening effect induced by the solid solution of VB2. By incorporating 20 vol% SiC, fully dense Hf1-xVxB2-SiC ceramics were successfully fabricated using the same sintering parameters. Compared with HfB2-SiC ceramics, Hf0.95V0.05B2-20 vol% SiC ceramics exhibited an elevated and comparable value of Vickers hardness (23.64 GPa), but lower fracture toughness (4.09 MPa m1/2).  相似文献   

3.
Using 0.5 wt.% La2O3 as a sintering additive, Mg-doped sialon composite with the maximum infrared transmittance of 50% was fabricated by hot pressing at 1800 °C. The addition of La2O3 significantly promotes the densification process of Mg-doped sialon and the anisotropic growth of β-sialon grains. As a result, the sintered material exhibits high hardness (20.2 GPa), fracture toughness (4.8 MPa m1/2) and flexural strength (664 MPa). Furthermore, the nano-sized glassy phases concentrated at triple junctions have no obviously negative impact on infrared translucency of Mg-doped sialon.  相似文献   

4.
《Ceramics International》2022,48(20):30224-30228
High densification and fine grain size are the key to achieve excellent mechanical properties of ceramic materials. Pressure-assisted sintering is an effective approach to achieve this goal. However, the pressure at different sintering stages has different effects on the densification behavior of nano-ceramics. In this work, it is found that adjusting the pressure applying regime during Spark Plasma Sintering of nano-alumina ceramics can effectively increase the densification rate and balance the relationship between the densification behaviors of particle coarsening, grain growth and vapor migration. When the pressure is applied at the beginning of the second sintering stage, the high densification and fine grain size microstructures can be both obtained at lower temperatures, leading to the best mechanical properties. This result is of great significance for the preparation of nano-ceramics with excellent mechanical properties.  相似文献   

5.
Reactive sintering is an effective and simple method to prepare transparent spinel ceramics. In this research, transparent MgO·nAl2O3 (0.98?≤ n?≤?2) spinel ceramics were prepared via reactive sintering in air followed by hot isostatic press (HIP), using MgO and γ-Al2O3 powders as raw materials. The influence of composition on densification and microstructure evolution was systemically investigated. More importantly, the relationship between microstructure of presintered samples and final properties of transparent ceramics was singled out. Thermodynamically stable large pores were easily generated in magnesia-rich and stoichiometric samples after presintering in air, causing severe abnormal grain growth during the HIP treatment and poor optical quality of the resulting samples. The presintering temperature of alumina-rich samples widely varied with composition. No large pores were observed in the presintered sample, which was beneficial for the elimination of residual pores in the following HIP process. Highly transparent spinel ceramics with n?=?1.1 and 1.3 were successfully fabricated with the transmittance above 84% even at the short wavelength of 400?nm, close to the theoretical value.  相似文献   

6.
In this study, the effects of the Mg2+ ions replaced by Ca2+ ions on the microwave dielectric properties of newly developed MgZrTa2O8 were investigated. Mg1-xCaxZrTa2O8 (x = 0–1.0) ceramics were prepared via a solid-state reaction method. Calcination of the mixed powders was performed at 1200 °C and sintering of the powder compacts was accomplished at temperatures from 1200 to 1550 °C. The substitution of Ca2+ significantly inhibited the densification of Mg1-xCaxZrTa2O8, led to the expansion of the unit cells, and triggered the formation of a second phase, CaTa2O6. The porosity-corrected relative permittivity increased almost linearly with the x value because of the replacement of the less polarizable Mg2+ ions by the more polarizable Ca2+ ions. The variation in the Q × f values followed a similar trend as that of the sintered density, and the change trend in the τf values was in accordance with that of relative permittivity. The best composition appeared to be Mg0.9Ca0.1ZrTa2O8, which showed excellent microwave dielectric properties of εr = 22.5, Q × f = 231,951 GHz, and τf = −32.9 ppm/°C. The Q × f value obtained is the highest among the wolframite dielectric ceramics reported in literature.  相似文献   

7.
Dense high-entropy (Hf,Zr,Ti,Ta,Nb)B2 ceramics with Nb contents ranging from 0 to 20 at% were produced by a two-step spark plasma sintering process. X-ray diffraction indicated that a single-phase with hexagonal structure was detected in the composition without Nb. In contrast, two phases with the same hexagonal structure, but slightly different lattice parameters were present in compositions containing Nb. The addition of Nb resulted in the presence of a Nb-rich second phase and the amount of the second phase increased as the Nb content increased. The relative densities were all >99.5 %, but decreased from ~100 % to ~99.5 % as the Nb content increased from 0 to 20 at%. The average grain size decreased from 13.9 ± 5.5 μm for the composition without Nb additions to 5.2 ± 2.0 μm for the composition containing 20 at% Nb. The reduction of grain size with increasing Nb content was due to the suppression of grain growth by the Nb-rich second phase. The addition of Nb increased Young’s modulus and Vickers hardness, but decreased shear modulus. While some Nb dissolved into the main phase, a Nb-rich second phase was formed in all Nb-containing compositions.  相似文献   

8.
《Ceramics International》2023,49(7):10748-10755
Ultra-high temperature HfB2 ceramic with nearly full densification is achieved by using gradient sintering process of SPS without any additives. The effect of the sintering temperature on the densification behavior, relative density, microstructure, mechanical and thermionic properties is systematically investigated. The results show that the fast densification of HfB2 ceramic occurs at the heating stage, and the highest relative density of 96.75% is obtained at T =1950 °C, P = 60 MPa and t =10min. As the temperature is increased from 1800 to 1950 °C, the grain size of HfB2 increases from 6.12 ±1.33 to 10.99 ± 2.25 μm, and refined microstructure gives the excellently mechanical properties. The highest hardness of 26.34 ±2.1GPa, fracture toughness of 7.12 ± 1.33 MPa m1/2 and bending strength of 501 ±10MPa belong to the HfB2 ceramic obtained at T =1950°C. Moreover, both the Vickers hardness and fracture toughness obey the normal indentation size effect. HfB2 ceramic also exhibits the thermionic emission characterization with the highest current density of 6.12 A/cm2 and the lowest work function of 2.92 eV.  相似文献   

9.
10.
ZrC ceramics containing 30 vol% SiC-ZrB2 were produced by high-energy ball milling and reactive hot pressing. The effects of ZrB2 content on the densification, microstructure, and mechanical properties of ceramics were investigated. Fully dense ceramics were achieved as ZrB2 content increased to 10 and 15 vol%. The addition of ZrB2 suppressed grain growth and promoted dispersion of the SiC particles, resulting in fine and homogeneous microstructures. Vickers hardness increased from 23.0 ± 0.5 GPa to 23.9 ± 0.5 GPa and Young’s modulus increased from 430 ± 3 GPa to 455 ± 3 GPa as ZrB2 content increased from 0 to 15 vol%. The increases were attributed to a combination of the higher relative density of ceramics with higher ZrB2 content and the higher Young’s modulus and hardness of ZrB2 compared to ZrC. Indentation fracture toughness increased from 2.6 ± 0.2 MPa⋅m1/2 to 3.3 ± 0.1 MPa⋅m1/2 as ZrB2 content increased from 0 to 15 vol% due to the increase in crack deflection by the uniformly dispersed SiC particles. Compared to binary ZrC-SiC ceramics, ternary ZrC-SiC-ZrB2 ceramics with finer microstructure and higher relative densities were achieved by the addition of ZrB2 particles.  相似文献   

11.
对会ZrO25mol%~25mol%的MgO-ZrO2材料的烧结,显微结构和力学性能进行了研究。与纯MgO材料相比,ZrO2的添加能起到促进烧结和提高材料强度和抗热震性的作用。1780℃烧结试样的显气孔率由16%降至1%.常温抗折强度由56MPa提高到90MPa以上,1400℃高温抗折强度由7.2MPa提高到47MPa以上,热震稳定性也随着ZrO2含量的增加而提高。  相似文献   

12.
Densifications of hot-pressed ZrC ceramics with Zr and graphite additives were studied at 1800-2000 °C. ZrC with 8.94 wt% Zr additive (named ZC10) sintered at 1900-2000 °C achieved higher relative densities (>98.4%) than that of additive-free ZrC (<83%). The densification improvement was attributed to the formation of non-stoichiometric ZrC0.9, whereas there had rapid grain growth with grain size about 50-100 μm in ZC10. By adding co-doped additive of Zr plus C and adjusting the molar ratio of Zr/C, ZrC with co-doped additives with Zr/C molar ratio at 1:2 (named ZC12), ZrC ceramics with both high relative density (98.4%) and fine microstructures (grain size about 5-10 μm) were obtained at 1900-2000 °C. Effect of formation of non-stoichiometric ZrC1−x on densification of ZrC was discussed. The Vickers hardness and indentation toughness of ZC10 and ZC12 samples sintered at 1900 °C were 17.8 GPa and 3.0 MPa m1/2, 16.2 GPa and 4.7 MPa m1/2, respectively.  相似文献   

13.
Sintering of Th1-xYxO2-x/2 ceramics (x = 0.01, 0.08, 0.15 and 0.22), planned to be used as solid electrolytes in oxygen sensors for sodium-cooled fast nuclear reactors, was investigated. High densification state (i.e. up to 98% TD) was reached after 4 h of heat treatment at 1600 °C and beyond. In addition, ESEM observations showed a major effect of yttrium on grain size due to solute drag effects. Sintering maps were plotted for all the samples and evidenced different stages driven by densification and grain growth. Grain growth was found to be strongly slowed down for x > 0.01, resulting in high values of relative density correlated to submicrometric grain size. Also, activation energies related to densification and grain growth were evaluated around 450 and 500–650 kJ mol−1, respectively. These results led to deliver guidelines for the formulation and sintering of Th1-xYxO2-x/2 ceramics in prospect of their use as a solid electrolyte.  相似文献   

14.
Hexagonal boron nitride (h-BN) can reinforce boron carbide (B4C) ceramics, but homogeneous dispersion of h-BN is difficult to achieve using conventional methods. Herein, B4C/h-BN composites were manufactured via the transformation of cubic (c-) BN during spark plasma sintering at 1800 °C. The effects of the c-BN content on the microstructure, densification, and mechanical properties of B4C/h-BN composites were evaluated. In situ synthesized h-BN platelets were homogeneously dispersed in the B4C matrix and the growth of B4C grains was effectively suppressed. Moreover, the c-BN to h-BN phase transformation improved the sinterability of B4C. The sample with 5 vol.% c-BN exhibited excellent integrated mechanical properties (hardness of 30.5 GPa, bending strength of 470 MPa, and fracture toughness of 3.84 MPa⋅ m1/2). Higher c-BN contents did not significantly affect the bending strength and fracture toughness but clearly decreased the hardness. The main toughening mechanisms were crack deflection, crack bridging, and pulling out of h-BN.  相似文献   

15.
《Ceramics International》2017,43(4):3489-3494
Monolithic tantalum carbide (TaC) ceramics were prepared by hot pressing in order to investigate the effect of hot pressing temperature on the densification behavior, microstructure and mechanical properties of TaC. Monolithic TaC sample hot pressed at 2000 °C for 45 min under 40 MPa, with relative density value above 97%, Vickers hardness of 15.7 GPa and fracture toughness of 4.1 MPa m1/2 was obtained. Fracture surfaces investigations of the samples, which were carried out using the SEM analysis, showed a significant grain growth by increasing the hot pressing temperature from 1700 to 2000 °C. Also, based on the X-ray diffraction pattern, a decrease in the lattice parameter of hot pressed TaC sample was observed.  相似文献   

16.
TaC ceramics with 0.03–0.60?wt% of boron additions were prepared by hot pressing at 2100?°C for 1?h under a pressure of 40?MPa. Effects of boron content on densification, phase composition, microstructure, mechanical properties and oxidation resistance of the TaC ceramics were investigated. When the boron content was 0.12?wt% and above, full density was obtained due to reactions between boron and oxygen impurity at presence of TaC. Minor phases of TaB2 and C were formed in the 0.24 and 0.60?wt% B compositions after gas-out of the oxygen impurity. Microstructure of the TaC ceramics was refined with increasing in boron content. The TaC ceramic with 0.24?wt% of boron showed the best mechanical properties with a Vickers hardness, flexural strength and fracture toughness of 17.7?GPa, 534?MPa and 4.6?MPa?m1/2, respectively. When more boron was added, interfacial bonding of the TaC grains was strengthened causing a decrease in fracture toughness. Oxidation resistance of the TaC ceramics increased with boron content. Particularly, the 0.60?wt% B composition showed a weight gain of 0.0018?g/cm2 after oxidization at 800?°C in air for 3?h.  相似文献   

17.
《Ceramics International》2017,43(6):5136-5144
Stoichiometric Tantalum carbide (TaC) ceramics were prepared by reaction spark plasma sintering using 0.333–2.50 mol% Si3N4 as sintering aid. Effects of the Si3N4 addition on densification, microstructure and mechanical properties of the TaC ceramics were investigated. Si3N4 reacted with TaC and tantalum oxides such as Ta2O5 to form a small concentration of tantalum silicides, SiC and SiO2, with significant decrease in oxygen content in the consolidated TaC ceramics. Dense TaC ceramics having relative densities >97% could be obtained at 0.667% Si3N4 addition and above. Average grain size in the consolidated TaC ceramics decreased from 11 µm at 0.333 mol% Si3N4 to 4 µm at 2.50 mol% Si3N4 addition. The Young's modulus, Vickers hardness and flexural strength at room temperature of the TaC ceramic with 2.50 mol% Si3N4 addition was 508 GPa, 15.5 GPa and 605 MPa, respectively. A slight decrease in bending strength was observed at 1200 °C due to oxidation of the samples.  相似文献   

18.
High-entropy ceramics (HEC) with a fixed composition of (VNbTaMoW)C5 were prepared by spark plasma sintering (SPS) from 1500 °C to 2200 °C. XRD, TEM, HRTEM, SAED and EDX were used to investigate effects of the sintering temperatures on compositional homogeneity, constituent phases and microstructure of the HECs. The results showed that single-phase HEC formed at a temperature as low as 1600 °C while ultimate elemental distribution homogeneity could be obtained at 2200 °C. Elemental distribution homogenization was accompanied by microstructural coarsening and oxide impurities aggregating at grain boundaries as temperature increased. SPS at 1900 °C for 12 min could yield uniform HECs (VNbTaMoW)C5 with Vickers hardness, nanohardness, fracture toughness and Young’s modulus reaching 19.6 GPa, 29.7 GPa, 5.4 MPa m1/2 and 551 GPa, respectively. The resultant HECs showed excellent wear resistance when coupled with WC at room temperature.  相似文献   

19.
Phase composition, microstructures, and mechanical properties of silicon nitride (Si3N4) ceramics were investigated with ZrB2 and B additives. Results showed that the addition of ZrB2 and/or B in 2.5 and 5 vol.% promoted the phase transformation of α- to β-Si3N4 phase and the formation of bimodal microstructure after hot-pressing at 1500 °C. With the introduction of 2.5 vol.% (ZrB2-B) binary additives, fracture toughness and strength of Si3N4 ceramics increased significantly from 5.2 MPa m1/2 and 384 MPa to 7.2 MPa m1/2 and 675 MPa, respectively. However, the hardness of ceramics decreased slightly from 23.5 GPa to 21.3 GPa, which was still higher than typical values reported on Si3N4 ceramics (15˜17 GPa).  相似文献   

20.
《Ceramics International》2020,46(12):20226-20235
The present work investigates the effect of (0–10 wt%) ZrB2 reinforcement on densification, mechanical, tribological and electrical properties of Cu. The consolidation of Cu–ZrB2 samples was carried out using a hot press (temperature: 500 °C, pressure: 500 MPa, time: 30 min, vacuum pressure: 1.3 × 10-2 mbar). The bulk density of the hot-pressed Cu composites decreased from 8.84 g/cc to 8.16 g/cc and the relative density of samples lowered from 98.6% to 92.1% with the addition of ZrB2. The incorporation of hard ZrB2 (up to 10 wt%) improved the hardness of Cu (1.32–2.55 GPa). However, the yield strength and compressive strength of Cu composites increased up to 5 wt% ZrB2, and further addition of ZrB2 lowered its strength. The yield strength of Cu samples varied from 602 to 672 MPa and the compressive strength between ~834 and 971 MPa. On the other hand, the coefficient of friction (COF) (from 0.49 to 0.18) and wear rate (from 49.3 × 10-3 mm3/Nm to 9.1 × 10-3 mm3/Nm) of Cu–ZrB2 samples considerably decreased with the addition of ZrB2. Significantly low wear was observed with Cu-10 wt% ZrB2 (Cu-10Z) samples, which is 5.41 times less than pure Cu. As far as the wear mechanisms are concerned, in pure Cu, continuous chips (wear debris) were formed during sliding wear by plowing. Whereas the major amount of material loss was occurred due to the plowing mechanism with discontinuous and short chip formation for Cu–ZrB2 composites. The electrical conductivity of Cu–ZrB2 samples decreased from 75.7% IACS to 44.1% IACS. In particular, Cu with ZrB2 (up to 3 wt%) could retain the conductivity of 66.8% IACS. This study reveals that the addition of ZrB2 (up to 3 wt%) is advantageous to have a good combination of properties for Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号