首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(11):8202-8207
Effects of HfC addition on the microstructures and mechanical properties of TiN-based and TiB2-based ceramic tool materials have been investigated. Their pore number decreased gradually and relative densities increased progressively when the HfC content increased from 15 wt% to 25 wt%. The achieved high relative densities to some extent derived from the high sintering pressure and the metal phases. HfC grains of about 1 µm evenly dispersed in these materials. Both TiN and TiB2 grains become smaller with increasing HfC content from 15 wt% to 25 wt%, which indicated that HfC additive can inhibit TiN grain and TiB2 grain growth, leading to the formation of a fine microstructure advantageous to improve flexural strength. Especially, TiB2-HfC ceramics exhibited the typical core-rim structure that can enhance flexural strength and fracture toughness. The toughening mechanisms of TiB2-HfC ceramics mainly included the pullout of HfC grain, crack deflection, crack bridging, transgranular fracture and the core-rim structure, while the toughening mechanisms of TiN-HfC ceramics mainly included pullout of HfC grain, fine grain, crack deflection and crack bridging. Besides, HfC hardness had an important influence on the hardness of these materials. Higher HfC content increased Vickers hardness of TiN-HfC composite, but lowered Vickers hardness of TiB2-HfC composite, being HfC hardness higher than for TiN while HfC hardness is lower than for TiB2. The decrease of fracture toughness of TiN-HfC ceramic tool materials with the increase of HfC content was attributed to the formation of a weaker interface strength.  相似文献   

2.
Silicon nitride + 1 wt% graphene platelet composites were prepared using various graphene platelets (GPLs) as filler. The influence of the addition of GPLs on the microstructure development and on the fracture toughness of Si3N4 + GPLs composites was investigated. The GPLs with thickness from 5 nm to 50 nm are relatively homogeneously distributed in the matrix of all composites, however overlapping/bundle formation of GPLs was found, containing 2–4 platelets as well. The single GPLs and overlapped GPLs are located at the boundaries of Si3N4, and hinder the grain growth and change the shape of the grains. The fracture toughness was significantly higher for all composites in comparison to the monolithic Si3N4 with the highest value of 9.9 MPa m0.5 for the composite containing the GPLs with smallest dimension. The main toughening mechanisms originated from the presence of graphene platelets, and responsible for the increase in the fracture toughness values are crack deflection, crack branching and crack bridging.  相似文献   

3.
Ti3SiC2/3Y-TZP (3 mol% Yttria-stabilized tetragonal zirconia polycrystal) composites were fabricated by spark plasma sintering (SPS). The effect of Ti3SiC2 content on room-temperature mechanical properties and microstructures of the composites were investigated. The Vickers hardness and bending strength of the composites decreased with the increasing of Ti3SiC2 content whereas the fracture toughness increased. The maximum fracture toughness of 9.88 MPa m1/2 was achieved for the composite with 50 vol.% Ti3SiC2. The improvement of the fracture toughness is owing to the crack deflection, crack bridging, the transformation toughening effects.  相似文献   

4.
Silicon carbide/graphene platelet (SiC/GPLs) composites were prepared using different weight percent of GPLs filler by hot pressing (HP) technology at 2100 °C in argon. The influence of the GPLs addition on bending strength, fracture toughness and related fracture characteristics was investigated. Both the bending strength and fracture toughness increased with increasing GPLs additives. The main fracture origins – strength degrading defects were pores at the low content of platelets and combination of pores and GPLs or clusters of GPLs particles in systems with a higher content of platelets. The fracture toughness increased due to the activated toughening mechanisms mainly in the form of crack bridging and crack branching, while the crack deflection was limited. The highest fracture toughness of 4.4 MPa m1/2 was achieved at 6 wt.% of GPLs addition, which was ∼30% higher than the KIC value of the reference material.  相似文献   

5.
The effect of addition of nanocrystalline ZrO2 and TiCN to ultrafine Al2O3 on mechanical properties and microstructure of the composites developed by spark plasma sintering (SPS) was investigated. The distribution of the nanoparticles was dependent on their overall concentration. Maximum hardness (21 GPa) and indentation toughness (5.5 MPa m1/2) was obtained with 23 vol% nanoparticles, which was considered as the optimum composition. The Zener pinning criteria were also satisfied at this composition with grain size of the restraining nanoparticles ~63–65 nm. Hardness of the composites follows the rule of mixtures; crack deflection and crack arrest by nanoparticles at grain boundaries along with mixed fracture mode led to high toughness in the nanocomposites. Cutting tool inserts were developed by SPS with the optimized composition and their machining performance was compared with commercial alumina based inserts. Increased toughness in the nanocomposite inserts reflects in the machining performance as the tool life improves drastically compared to that of the commercial inserts at high cutting speeds ≥500 m min?1. This was attributed to differences in their failure modes; the commercial inserts fail catastrophically by fracture due to their low toughness whereas the nanocomposite inserts reach the tool failure criteria by crater wear at all machining conditions.  相似文献   

6.
Boron carbide/graphene platelet (B4C/GPLs) composites have been prepared with a different weight percent of GPLs as sintering additive and reinforcing phase, hot pressed at 2100 °C in argon. The influence of the GPLs addition on fracture toughness (KIC) and electrical conductivity was investigated. Single Edge V-Notched Beam (SEVNB) method was used for fracture toughness measurements and the four-point Van der Pauw method for electrical conductivity measurements. With increasing amount of GPLs additives, the fracture toughness increased due to the activated toughening mechanisms in the form of crack deflection, crack bridging, crack branching and graphene sheet pull-out. The highest fracture toughness of 4.48 MPa.m1/2 was achieved at 10 wt.% of GPLs addition, which was ∼50% higher than the KIC value of the reference material. The electrical conductivity increased with GPLs addition and reached the maximum value at 8 wt.% of GPLs, 1.526 × 103 S/m in the perpendicular and 8.72 × 102 S/m in the parallel direction to the hot press direction, respectively.  相似文献   

7.
《Ceramics International》2017,43(16):13047-13054
Zr-Al-C was in-situ synthesized as a toughening component in ZrB2-SiC ceramics by spark plasma sintering (SPS) ball-milled ZrB2-based composite powders with SiC and graphite powders. The phase composition of Zr-Al-C toughened ZrB2-SiC (ZSA) composite ceramics fabricated through the two-step process (ball milling and SPS) did not change dramatically with varying content of Zr-Al-C which shows a major phase of Zr3Al4C6. With increasing Zr-Al-C content, the fracture toughness of the ZSA ceramics initially increased and then decreased when the content reached 40 vol%. The ZSA ceramic with 30 vol% Zr-Al-C exhibited a maximum fracture toughness value of 5.96 ± 0.31 MPa m1/2, about 22% higher than that of the ZSA ceramic with 10 vol% Zr-Al-C. When the Zr-Al-C content goes beyond 30 vol%, the higher open porosity and component agglomeration led to the relatively lower fracture toughness. Crack deflection and bridging resulted from the weak interface bonding between Zr-Al-C and matrix phases and the weak internal layers of Zr-Al-C crystals, leading to longer crack paths and, hence, the toughened ZSA composite ceramics. Compared to the one-step in-situ synthesis process of Zr-Al-C and the direct incorporation process of synthesized Zr-Al-C grains, the two-step in-situ synthesis process not only led to the more uniform distribution of different components but also resulted in a much larger size of Zr-Al-C grains with a large aspect ratio causing longer crack propagation path as the result of crack deflection and bridging. The larger Zr-Al-C grains combined with the more homogeneous microstructure achieve the most substantial toughening of the ZSA composite ceramics. This work points out a promising approach to control and optimize the microstructure and improve the fracture toughness of ZrB2-SiC composite ceramics by selecting the incorporation process of compound reinforcement components.  相似文献   

8.
It is demonstrated that 0.1 wt% of multi-walled carbon nanotubes (MWCNTs) or single-walled carbon nanotubes (SWCNTs) added to zirconia toughened alumina (ZTA) composites is enough to obtain high hardness and fracture toughness at indentation loads of 1, 5, and 10 kg. ZTA composites with 0.01 and 0.1 wt% of MWCNTs or SWCNTs were densified by spark plasma sintering (SPS) at 1520 °C resulting in a higher hardness and comparable fracture toughness to the ZTA matrix material. The observed toughening mechanisms include crack deflection, pullout of CNTs as well as bridged cracks leading to improved fracture toughness without evidence of transformation toughening of the ZrO2 phase. Scanning electron microscopy showed that MWCNTs rupture by a sword-in-sheath mechanism in the tensile direction contributing to an additional increase in fracture toughness.  相似文献   

9.
In this contribution, we report the analysis and interpretation of the mechanical property measurements for a new class of SiAlON ceramic. The hardness and indentation fracture toughness were measured on the hot pressed Ba-doped S-SiAlON ceramic using Vickers indentation at varying loads (up to 300 N). An important observation was that all the investigated S-SiAlON exhibited the characteristic rising R-curve behavior with a maximum toughness of up to 10–12 MPa m1/2 for ceramics, hot pressed both at 1700 and 1750 °C. Crack deflection by large elongated S-phase grains and crack bridging by β-Si3N4 needles has been found to be the major toughening mechanisms for the observed high toughness. Theoretical estimates, using a toughening model based on crack bridging and deflection by platelet shaped ‘S’-phase grains and β-Si3N4 needles, reveal the interfacial friction of around 200 MPa. Careful analysis of the indentation data reveals the average (apparent) hardness modestly increases with indent load in all S-SiAlON samples, with more significant effect for S-SiAlON, hot pressed at 1600 °C. This effect has been analyzed in the light of the established model of ‘indentation-induced cracking’ phenomenon. Our experimental results suggest that a modest combination of average hardness of 15 GPa and indentation toughness of around 12 MPa m1/2 could be achieved in Ba-S-SiAlON ceramic and further improvement requires microstructural tailoring.  相似文献   

10.
《Ceramics International》2015,41(4):5843-5851
Hot pressed monolithic ZrB2 ceramic (Z), ZrB2–20 vol% SiC composite (ZS20) and ZrB2–20 vol% SiC–10 vol% nano-graphite composite (ZS20Gn10) were investigated to determine the influence of graphite nano-flakes on the sintering process, microstructure, and mechanical properties (Vickers hardness and fracture toughness) of ZrB2–SiC composites. Hot pressing at 1850 °C for 60 min under 20 MPa resulted in a fully dense ZS20Gn10 composite (relative density: 99.6%). The results disclosed that the grain growth of ZrB2 matrix was efficiently hindered by SiC particles as well as graphite nano-flakes. The fracture toughness of ZS20Gn10 composite (7.1 MPa m1/2) was essentially improved by incorporating the reinforcements into the ZrB2 matrix, which was greater than that of Z ceramic (1.8 MPa m1/2) and ZS20 composite (3.8 MPa m1/2). The fractographical observations revealed that some graphite nano-flakes were kept in the ZS20Gn10 microstructure, besides SiC grains, which led to toughening of the composite through graphite nano-flakes pull out. Other toughening mechanisms such as crack deflection and branching as well as crack bridging, due to the thermal residual stresses in the interfaces, were also observed in the polished surface.  相似文献   

11.
Silicon nitride + 1 wt% graphene platelet composites were prepared using various graphene platelets (GPL) and two processing routes; hot isostatic pressing (HIP) and gas pressure sintering (GPS). The influence of the processing route and graphene platelets’ addition on the fracture toughness has been investigated. The matrix of the composites prepared by GPS consists of Si3N4 grains with smaller diameter in comparison to the composites prepared by HIP. The indentation fracture toughness of the composites was in the range 6.1–9.9 MPa m0.5, which is significantly higher compared to the monolithic silicon nitride 6.5 and 6.3 MPa m0.5. The highest value of KIC was 9.9 MPa m0.5 in the case of composite reinforced by the smallest multilayer graphene nanosheets, prepared by HIP. The composites prepared by GPS exhibit lower fracture toughness, from 6.1 to 8.5 MPa m0.5. The toughening mechanisms were similar in all composites in the form of crack deflection, crack branching and crack bridging.  相似文献   

12.
Yttria-stabilised zirconia (Y-TZP) based composites with a tungsten carbide (WC) content up to 50 vol.% were prepared from nanopowders by means of conventional hot pressing. The mechanical properties were investigated as a function of the WC content. The hardness increased from 12.3 GPa for pure Y-TZP up to 16.4 GPa for the composite with 50 vol.% WC, whereas the bending strength reached a maximum of 1551 MPa for the 20 vol.% WC composite. The toughness of the composites could be optimised by judicious adjustment of the overall yttria content by mixing monoclinic and 3 mol% Y2O3 co-precipitated ZrO2 starting powders. An optimum fracture toughness of 9 MPa m1/2 was obtained for a 40% WC composite with an overall yttria content of 2 mol%. The hardness, strength as well as fracture toughness of the ultrafine grained composites with a nanosized WC source was significantly higher than with micron-sized WC. The experimentally measured contribution of the different observed toughening mechanisms was evaluated as a function of the WC content. Transformation toughening was found to be the major toughening mechanism in ZrO2–WC composites with up to 30 vol.% WC, whereas the contribution of crack deflection and bridging is significant at a secondary phase content above 30 vol.%.  相似文献   

13.
《Ceramics International》2017,43(13):10224-10230
Whiskers and nanoparticles are usually used as reinforcing additives of ceramic composite materials due to the synergistically toughening and strengthening mechanisms. In this paper, the effects of TiC nanoparticle content, particle size and preparation process on the mechanical properties of hot pressed Al2O3-SiCw ceramic tool materials were investigated. The results showed that the Vickers hardness and fracture toughness of the materials increased with the increasing of TiC content. The optimized flexural strength was obtained with TiC content of 4 vol% and particle size of 40 nm. The particle size has been found to have a great influence on flexural strength and small influence on hardness and fracture toughness. It was concluded that the flexural strength increased remarkably with the decreasing of the TiC particle size, which was resulted from the improved density and refined grain size of the composite material due to the dispersion of the smaller TiC particle size. SEM micrographs of fracture surface showed the whiskers to be mainly distributed along the direction perpendicular to the hot-pressing direction. The fracture toughness was improved by whisker crack bridging, crack deflection and whisker pullout; the TiC nanoparticles in Al2O3 grains caused transgranular fracture and crack deflection, which improved the flexural strength and fracture toughness with whiskers synergistically. Uniaxial hot-pressing of SiC whisker reinforced Al2O3 ceramic composites resulted in the anisotropy of whiskers’ distribution, which led to crack propagation differences between lateral crack and radical crack.  相似文献   

14.
Titanium carbide ceramics with different contents of boron or B4C were pressureless sintered at temperatures from 2100 °C to 2300 °C. Due to the removal of oxide impurities, the onset temperature for TiC grain growth was lowered to 2100 °C and near fully dense (>98%) TiC ceramics were obtained at 2200 °C. TiB2 platelets and graphite flakes were formed during sintering process. They retard TiC grains from fast growth and reduced the entrapped pores in TiC grains. Therefore, TiC doped with boron or B4C could achieve higher relative density (>99.5%) than pure TiC (96.67%) at 2300 °C. Mechanical properties including Vickers’ hardness, fracture toughness and flexural strength were investigated. Highest fracture toughness (4.79 ± 0.50 MPa m1/2) and flexural strength (552.6 ± 23.1 MPa) have been obtained when TiC mixed with B4C by the mass ratio of 100:5.11. The main toughening mechanisms include crack deflection and pull-out of TiB2 platelets.  相似文献   

15.
《Ceramics International》2017,43(10):7454-7460
Multi-walled carbon nanotubes (MWCNTs) were used to optimize the microstructure and improve the fracture properties of hot-pressed carbon fiber-reinforced ZrB2-based ultra-high temperature ceramic composites. Microstructure analysis indicated that the introduction of MWCNTs effectively reduced the carbon fiber degradation and prevented fiber-matrix interfacial reaction during processing. Due to the presence of MWCNTs, the matrix contained fine ZrB2 grains and in-situ formed nano-sized SiC/ZrC grains. The fracture properties were evaluated using the single edge-notched beam (SENB) test. The fracture toughness and work of fracture of the Cf/ZrB2-based composite with MWCNTs were 7.0±0.4 MPa m1/2 and 379±34 J/m2, respectively, representing increases of 59% and 87% compared to those without MWCNTs. The excellent fracture properties are attributed to the moderate interfacial bonding between the fibers and matrix, which favour the toughening mechanisms, such as fiber bridging, fiber pull-out and crack deflection at interfaces.  相似文献   

16.
《Ceramics International》2016,42(12):13497-13506
Si3N4/(W, Ti)C graded nano-composite ceramic tool materials with different thickness ratios and number of layers were fabricated by hot pressing technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and the microstructure and indention cracks were observed. The experiment results showed that the five-layer graded nano-composites with a thickness ratio of 0.2, which were sintered under a pressure of 30 MPa at 1700 °C in vacuum condition for 45 min, had the optimum comprehensive mechanical properties with a flexural strength of 1080.3 MPa, a hardness of 17.64 GPa, and a fracture toughness of 10.87 MPa·m1/2. The formation of elongated β-Si3N4 grains contributes to the favorable mechanical properties. The graded structure can induce residual compressive stress in the surface layer and enhance the mechanical properties. The strengthening and toughening mechanisms are a synergistic effect of intergranular and transgranular fracture, crack bridging and deflection.  相似文献   

17.
In this paper, zirconium diboride based ceramics added with 20 vol.% silicon carbide particle and 15 vol.% zirconia fiber (Z20Sp15Zf) were prepared by hot-pressing at 1850 °C for 60 min under a uniaxial load of 30 MPa in Ar atmosphere. R-curves for Z20Sp15Zf ceramics were studied using the indentation-strength in bending technique and the envelope method. The results indicated that these two testing methods were consistent and viable for estimating R-curve. Z20Sp15Zf ceramics had high resistance to crack growth and damage tolerance with the 6.8 MPa m1/2 of steady-state toughness. The toughening mechanism was fiber debonding, fiber pull-out, crack bridging, crack branching, crack deflection and transformation toughening.  相似文献   

18.
In-situ mullite whisker reinforced aluminum chromium phosphate wave-transparent ceramics were designed and prepared. The phase transformation, microstructure, mechanical and electrical properties of the ceramics were investigated, and the mechanisms of in-situ growth and toughening were discussed. Results indicated that the in-situ growth of mullite whisker significantly improved the mechanical properties of the matrix, especially the high temperature flexural strength. The room temperature flexural strength, 1000 °C flexural strength and fracture toughness of the ceramics were 135.60 MPa, 121.71 MPa and 4.52 MPa m1/2. After sintering at 1500 °C, the optimum properties of ε'r, tanδ and microwave transmittance at region 8–12 GHz were <3.6, <0.03 and>80%, respectively. The sinterability of ACP matrix was improved by the in-situ process of high mullization above 1450 °C. Using ACP binder as the raw material can avoid the phase transformation from B-AlPO4 to T-AlPO4. The synthesized mullite whiskers played a role in toughening by whiskers fracture, crack deflection and whisker pulling out.  相似文献   

19.
《Ceramics International》2023,49(18):29709-29718
Mechanical alloying and spark plasma sintering (SPS) were used to prepare dense SiAlCN ceramic and SiAlCN ceramic toughened by SiC whiskers (SiCw) or graphene nanoplatelets (GNPs). The influences of different reinforcements on the microstructure and fracture toughness were investigated. The SiAlCN ceramic exhibited a fracture toughness of 4.4 MPa m1/2 and the fracture characteristics of grain bridging, alternative intergranular and transgranular fracture. The fracture toughness of SiCw/SiAlCN ceramic increased to 5.8 MPa m1/2 and toughening mechanisms were crack deflection, SiCw bridging and pull-out. The fracture toughness of GNP/SiAlCN ceramic increased significantly, which was up to 6.6 MPa m1/2. GNPs played an important role in grain refinement, which resulted in the smallest grain size. Multiple toughening mechanisms, including crack deflection, crack branch, GNP bridging and pull-out could be found. The better toughening effect could be attributed to the larger specific surface area of GNPs and the appropriate interface bonding between GNPs and matrix.  相似文献   

20.
The effect of the heat treatment on the toughness and thermal shock resistance of the silicon carbide–silicon nitride composites prepared by liquid-phase-sintering was investigated. The fracture toughness has been estimated using the indentation method and the thermal shock resistance was studied using the indentation-quench method. The results were compared to those obtained for a reference silicon carbide material, prepared by the same fabrication route. The indentation toughness increased from 2.88 to 5.39 MPa m1/2 due to the toughening mechanisms (crack deflection, mechanical interlocking and crack branching) occurring in the heat-treated materials during the crack propagation. Similarly the thermal shock resistance increased after the heat treatment of the experimental materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号