首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(10):7724-7727
Ceramics in the system (1-x)[0.5K0.5Bi0.5TiO3-0.5Ba(Zr0.2Ti0.8)O3]-xBi(Zn2/3Nb1/3)O3 have been fabricated by a solid-state processing route for compositions x≤0.3. The materials are relaxor dielectrics. The temperature of maximum relative permittivity, Tm, decreased from 150 °C for composition x=0, to 70 °C for x=0.2. The x=0.2 sample displayed a wide temperature range of stable relative permittivity, εr, such that εr=805±15% from −20 to 600 °C (1 kHz). Dielectric loss tangent was ≤0.02 from 50 °C to 450 °C (1 kHz), but due to the tanδ dispersion peak, the value increased to 0.09 as temperatures fell from 50 °C to −20 °C. Values of dc resistivity were of the order of ~109 Ω m at 300 °C. These properties are promising in the context of developing new high temperature capacitor materials.  相似文献   

2.
Recent papers report that BaZn1/3Ta2/3O3 (BZT) ceramic can be sintered at a temperature as low as 1050 °C owing to the use of flux agents like B2O3 + LiF combined with a slight non-stoichiometry, whereas its usual sintering temperature is 1400 °C. This low sintering temperature (below the Cu's melting point = 1083 °C) opens the route to fabricate copper based multilayer ceramic capacitors, in condition that a reductive atmosphere is used during the sintering. This paper presents the effect of three various sintering atmospheres (air, H2 (1%) in N2 and H2 (1%) in Ar) on the stability and the dielectric properties of BZT. It is researched a suitable sintering atmosphere to prevent Cu from oxidation and to preserve the dielectric properties of BZT. Using the appropriate atmosphere, copper based multilayer ceramic capacitors, with attractive dielectric properties, have been successfully processed.  相似文献   

3.
Ceramics in the system Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 (BNN–BZN) were prepared by the mixed oxide route. Powders were mixed and milled, calcined at 1100–1200 °C then pressed and sintered at temperatures in the range 1400–1500 °C for 4 h. Selected samples were annealed or slowly cooled after sintering. Most products were in excess of 96% theoretical density. X-ray diffraction confirmed that all specimens were ordered to some degree and could be indexed to hexagonal geometry. Microstructural analysis confirmed the presence of phases related to Ba5Nb4O15 and Ba8Zn1Nb6O24 at the surfaces of the samples. The end members BNN and BZN exhibited good dielectric properties with quality factor (Qf) values in excess of 25,000 and 50,000 GHz, respectively, after rapid cooling at 240 °C h−1. In contrast, mid-range compositions had poor Qf values, less than 10,000 GHz. However, after sintering at 1450 °C for 4 h and annealing at 1300 °C for 72 h, specimens of 0.35(Ba(Ni1/3Nb2/3)O3)–0.65(Ba(Zn1/3Nb2/3)O3) exhibit good dielectric properties: τf of +0.6 ppm °C−1, relative permittivity of 35 and quality factor in excess of 25,000 GHz. The improvement in properties after annealing is primarily due to an increase in homogeneity.  相似文献   

4.
1 mol% Li2O excess (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 ceramics were prepared by the conventional mixed oxide method and sintered from 950 to 1200 °C. Also, Li2O was employed as a sintering aid for high densification and low temperature sintering process. X-ray diffraction results of 1 mol% Li2O excess (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 lead free piezoelectric ceramics indicated that the specimens were well crystallized and have tetragonal structure. The specimens which sintered at 1050 °C showed the highest piezoelectric properties compared with others. The measured piezoelectric constant and electromechanical coupling coefficient were 231 pC/N and 38.9%, respectively. Curie temperature of (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 ceramics was 344.32, 344.4 and 344.5 °C at 1, 10 and 100 kHz, respectively.  相似文献   

5.
《Ceramics International》2016,42(11):13262-13267
Barium zirconate titanate (BaZr0.2Ti0.8O3, BZT) 250 nm thick thin films were fabricated by pulsed laser deposition and the influence of the substrate temperature on their preferred orientation, microstructure, morphology and dielectric properties was investigated. Dielectric measurements indicated the (1 1 0)-oriented BZT thin films deposited at 750 °C to show good dielectric properties with high dielectric constant (~500 at 100 kHz), low loss tangent (<0.01 at 100 kHz), and superior tunability (>70% at 400 kV/cm), while the largest figure of merit was 78.8. The possible microstructural background responsible for the high dielectric constant and tenability is discussed. In addition, thin films deposited at 750 °C with device quality factor of 8738 and dielectric nonlinearity coefficient of 1.66×10−10 J/C4m5 were demonstrated.  相似文献   

6.
The low sintering temperature and the good dielectric properties such as high dielectric constant (ɛr), high quality factor (Q × f) and small temperature coefficient of resonant frequency (τf) are required for the application of chip passive components in the wireless communication technologies. In the present study, the sintering behaviors and dielectric properties of Ba3Ti4Nb4O21 ceramics were investigated as a function of B2O3–CuO content. Ba3Ti4Nb4O21 ceramics with B2O3 or CuO addition could be sintered above 1100 °C. However, the additions of both B2O3 and CuO successfully reduced the sintering temperature of Ba3Ti4Nb4O21 ceramics from 1350 to 900 °C without detriment to the microwave dielectric properties. From the X-ray diffraction (XRD) studies, the sintering behaviors and the microwave dielectric properties of low-fired Ba3Ti4Nb4O21 ceramics were examined and discussed in the formation of the secondary phases. The Ba3Ti4Nb4O21 sample with 1 wt% B2O3 and 3 wt% CuO addition, sintered at 900 °C for 2 h, had the good dielectric properties: ɛr = 65, Q × f = 16,000 GHz and τf = 101 ppm/°C.  相似文献   

7.
The copper-niobates, M2+Cu2Nb2O8 (M2+ = Zn, Co, Ni, Mg or Ca) have good microwave dielectric properties when sintered between 985–1010 °C and 1110 °C for CaCu2Nb2O8. Therefore, they would be potential dielectric LTCC materials if they could be made to sinter below 960 °C (melting point of silver). To this end, additions of 3 wt.% V2O5 were made to ZnCu2Nb2O8, CoCu2Nb2O8, NiCu2Nb2O8, MgCu2Nb2O8 and CaCu2Nb2O8, and their sintering and dielectric behaviour was investigated for samples fired between 800 and 950 °C. Doping lowered sintering temperatures to below the 960 °C limit in all cases. Doping had the general effect of reducing ɛr, density, Qf and τf, although doped CaCu2Nb2O8 had a Qf value of 9300 GHz, nearly four times that of the best undoped sample. Doped ZnCu2Nb2O8 fired to 935 °C had Qf = 10,200 GHz, and for doped CoCu2Nb2O8 fired to 885 °C Qf = 7500 GHz. When doped and undoped samples all fired to 935 °C were compared, all doped samples had greater ɛr and density, and all except ZnCu2Nb2O8 had a smaller τf. All doped samples had a more linear relationship between frequency and temperature in the range 250–300 K.  相似文献   

8.
The effects of Bi2O3 addition on the microwave dielectric properties and the microstructures of Nb2O5-Zn0.95Mg0.05TiO3 + 0.25TiO2 (Nb-ZMT′) ceramics prepared by conventional solid-state routes have been investigated. The results of X-ray diffraction (XRD) indicate the presence of four crystalline phases, ZnTiO3, TiO2, Bi2Ti2O7, and (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 in the sintered ceramics, depending upon the amount of Bi2O3 addition. In addition, in order to confirm the existence of (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 phase in the samples, the microstructure of Nb-ZMT′ ceramic with 5 wt.% B2O3 addition was analyzed by using a transmission electron micrograph. The dielectric constant of Nb-ZMT′ samples was higher than ZMT′ ceramics. The Nb-ZMT′ ceramic with 5 wt.% Bi2O3 addition exhibits the optimum dielectric properties: Q × f = 12,000 GHz, ?r = 30, and τf = ?12 ppm/°C. Unlike the ZMT′ ceramic sintered at 900 °C, the Nb-ZMT′ ceramics show higher Q value and dielectric constant. Moreover, there is no Zn2TiO4 existence at 960 °C sintering. To understand the co-sinterability between silver electrodes and the Nb-ZMT′ dielectrics, the multilayer samples are prepared by multilayer thick film processing. The co-sinterability (900 °C) between silver electrode and Nb-ZMT′ dielectric are well compatible, because there are no cracks, delaminations, and deformations in multilayer specimens.  相似文献   

9.
Ba(Zr0.2Ti0.8)O3 (BZT20) ceramics were prepared by spark plasma sintering (SPS) and conventional sintering. The dynamic field-induced displacement and small-signal remnant piezoelectric constant measured by a resonant–antiresonant frequency method were evaluated. By normal sintering, the density, grain size, and dielectric constant of the ceramics increased with sintering temperature. The BZT20 ceramics prepared by SPS were characterized by linear field-induced strain. In response to the application of post-annealing at 1300 °C, BZT20 ceramics exhibited linear strain loop and high field-induced strain corresponding to dynamic strain/field d33 at 20 kV/cm of 290 pm/V. The remnant piezoelectric properties of the BZT20 ceramics were found to largely depend on the preparation conditions, including the sintering temperature and annealing temperature. The BZT20 ceramics prepared by SPS and post-annealed at 1300 °C showed Qm and kp values of 325 and 25.1 (%), respectively.  相似文献   

10.
Five Ba(Co1/3Nb2/3)O3 samples sintered at different temperatures (form 1350 to 1550 °C), one Ba(Mg1/3Ta2/3)O3 and a Ba(Mg1/3Nb2/3)O3 sample were examined by Raman scattering to reveal the correlation of the 1:2 ordered perovskite structure with the microwave properties, such as dielectric constant and Q factors. The Ba(Co1/3Nb2/3)O3 sample sintered at 1400 °C, which possesses the highest microwave Q value and the lowest dielectric constant among five Ba(Co1/3Nb2/3)O3 samples, has the narrowest width and the highest frequency of the stretch mode of oxygen octahedron (i.e. A1g(O) near 800 cm−1). We found that the dielectric constant is strongly correlated with the Raman shift of A1g(O) stretch modes, and the width of A1g(O) stretch mode reflects the quality factor Q × f value in the 1:2 ordered perovskite materials. This concludes that the oxygen octahedron play an important role of the material's microwave performance. Based on the results of Q × f values and the lineshapes of A1g(O) stretch mode, we found that the propagation of microwave energy in Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3 shows weak damping behavior, however, Ba(Co1/3Nb2/3)O3 samples sintered at different temperature exhibit heavily damped behavior.  相似文献   

11.
《Ceramics International》2016,42(9):10833-10837
Nb2O5 doped Ba(Zr0.2Ti0.8)O3 (short as BZT20) ceramics were prepared by a mixed-oxide method using a high-energy planetary ball mill and the influence of Nb2O5 addition on microstructure, dielectric properties and diffuse phase transition behavior of BZT20 ceramics were investigated. It was demonstrated that Nb5+entered the B-site of BZT20 ceramic and substituted for Ti4+, which caused the expansion and distortion of crystal lattice. BZT20 ceramics doped with 0.2 mol% Nb2O5 showed excellent dielectric property and lower diffusivity with εm=37,823 and γ=1.49. We supposed that the increase of dielectric constant and decrease of diffuseness parameter with increasing Nb2O5 content were caused by lattice disorder and unbalancing of cations induced by the substitution of Ti4+ by Nb5+ in the B sites of BZT20 ceramics. The Curie temperature decreased with the increase of Nb2O5 content, which can be attributed to enlarged distortion energy of the Nb doped BZT20 structure. Besides, grain size effect on the dielectric property and diffuse phase transition behavior of Nb2O5 doped BZT20 ceramics was also investigated.  相似文献   

12.
Li2O–Nb2O5–TiO2 based ceramic systems have been the candidate materials for LTCC application, due to their high dielectric constant and Q × f value and controllable temperature coefficient in the microwave region. However, the sintering temperature was relatively higher (above 1100 °C) for practical application. In this study, dielectric properties of Li(1+xy)Nb(1−x−3y)Ti(x+4y)O3 solid solution were studied with different x and y contents and among them, the Li1.0Nb0.6Ti0.5O3 composition (x = 0.1, y = 0.1) was selected, due to its reasonable dielectric properties to determine the possibility of low temperature sintering. The effects of 0.17Li2O–0.83V2O5, as a sintering agent, on sinterability and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics were investigated as a function of the sintering agent content and sintering temperature. With addition of 0.17Li2O–0.83V2O5 above 0.5 wt%, the specimens were well densified at a relatively lower temperature of 850 °C. Only slight decrease in apparent density was observed with increasing 0.17Li2O–0.83V2O5 content above 0.75 wt%. In the case of 0.5 wt% 0.17Li2O–0.83V2O5 addition, the values of dielectric constant and Q × f reached maximum. Further addition caused inferior microstructure, resulting in degraded dielectric properties. For the specimens with 0.5 wt% 0.17Li2O–0.83V2O5 sintered at 850 °C, dielectric constant, Q × f and TCF values were 64.7, 5933 GHz and 9.4 ppm per °C, respectively.  相似文献   

13.
The effects of ZnB2O4 glass additions on the sintering temperature and microwave dielectric properties of Ba3Ti5Nb6O28 have been investigated using dilatometer, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and a network analyzer. The pure Ba3Ti5Nb6O28 system showed a high sintering temperature (1250 °C) and had the good microwave dielectric properties: Q × f of 10,600 GHz, ɛr of 37.0, τf of −12 ppm/°C. It was found that the addition of ZnB2O4 glass to Ba3Ti5Nb6O28 lowered the sintering temperature from 1250 to 925 °C. The reduced sintering temperature was attributed to the formation of ZnB2O4 liquid phase and B2O3-rich liquid phases. Also the addition of ZnB2O4 glass enhanced the microwave dielectric properties: Q × f of 19,100 GHz, ɛr of 36.6, τf of 5 ppm/°C. From XPS and XRD studies, these phenomena were explained in terms of the reduction of oxygen vacancies and the formation of secondary phases having the good microwave dielectric properties.  相似文献   

14.
The B2O3 added Ba(Zn1/3Nb2/3)O3 (BBZN) ceramic was sintered at 900 °C. BaB4O7, BaB2O4, and BaNb2O6 second phases were found in the BBZN ceramic. Since BaB4O7 and BaB2O4 second phases have an eutectic temperature around 900 °C, they might exist as the liquid phase during sintering at 900 °C and assist the densification of the BZN ceramics. Microwave dielectric properties of dielectric constant (ɛr) = 32, Q × f = 3500 GHz, and temperature coefficient of resonance frequency (τf) = 20 ppm/°C were obtained for the BZN with 5.0 mol% B2O3 sintered at 900 °C for 2 h. The BBZN ceramics were not sintered below 900 °C and the microwave dielectric properties of the BBZN ceramics sintered at 900 °C were very low. However, when CuO was added, BBZN ceramic was well sintered even at 875 °C. The liquid phase related to the BaCu(B2O5) second phase could be responsible for the decrease of sintering temperature. Good microwave dielectric properties of ɛr = 36, Q × f = 19,000 GHz and τf = 21 ppm/°C can be obtained for CuO doped BBZN ceramics sintered at 875 °C for 2 h.  相似文献   

15.
Revised thermodynamic equilibrium in the BaO–MgO–Nb2O5 pseudo-ternary system has lead to development of a novel composite dielectric material with dielectric constant, ? = 25.5, efficacy factor, Q × f = 160 THz, and temperature coefficient of the resonant frequency, τf = +0.5 ppm/K. The material shows one of the highest Q-factors among the Ta-free microwave dielectric resonators. It also does not contain volatile Zn and Co elements. Other important property of the title compound is low sintering temperature of 1320 °C which significantly reduces the processing cost.  相似文献   

16.
Doping behaviors of NiO and Nb2O5 in BaTiO3 in two doping ways and dielectric properties of BaTiO3-based X7R ceramics were investigated. When doped in composite form, the additions rendered higher solubility than that doped separately due to the identical valence between the complex (Ni1/32+Nb2/35+)4+ and Ti4+. NiO–Nb2O5 composite oxide was more effective in broadening dielectric constant peaks which was responsible for the temperature-stability of BaTiO3 ceramics. A reduction in grain size was observed in the specimens with 0.5–0.8 mol% NiO–Nb2O5 composite oxide, whereas the abnormal growth of individual grains took place in the 1.0 mol% NiO–Nb2O5 composite oxide-doped specimen. When the specimen of BaTiO3 doped with 0.8 mol% NiO–Nb2O5 composite oxide was sintered at 1300 °C for 1.5 h in air, good dielectric properties were obtained and the requirement of (EIA) X7R specification with a dielectric constant of 4706 and dielectric loss lower than 1.5% were satisfied.  相似文献   

17.
《Ceramics International》2017,43(12):8898-8904
The SrO-Na2O-Nb2O5-SiO2 (SNNS) glass-ceramics were prepared through the melt-quenching combined with the controlled crystallization technique. XRD results showed Sr6Nb10O30, SrNb2O6, NaSr2Nb5O15 with tungsten bronze structure and NaNbO3 with the perovskite structure. With the decrease of crystallization temperature, dielectric constant firstly increased and then decreased, while breakdown strength (BDS) was increased. High BDS of the glass-ceramics is attributed to the dense and uniform microstructure at low crystallization temperature. The optimal dielectric constant of 140±7 at 900 °C and BDS of 2182±129 kV/cm at 750 °C were obtained in SNNS glass-ceramics. The theoretical energy-storage density was significantly improved up to the highest value of 15.2±1.0 J/cm3 at 800 °C, which is about 5 times than that at 950 °C. The discharged efficiency increased from 65.8% at 950 °C to 93.6% at 750 °C under the electric field of 500 kV/cm by decreasing crystallization temperature.  相似文献   

18.
Broadband dielectric spectroscopy results of various ordered and disordered (1 ? x)Pb(Mg1/3Nb2/3)O3–(x)Pb(Sc1/2Nb1/2)O3 (PMN–PSN) ceramics are investigated in the temperature range from 80 K to 300 K and frequency range from 20 Hz to 2 THz. Dielectric dispersion is very broad and in the ferroelectrics case (x = 1, 0.95) consists of two parts: low-frequency part caused by ferroelectric domains and higher frequency part caused by soft mode. The relaxational soft mode exhibits pronounced softening close to phase transition temperature, as it is typical for order–disorder phase transitions. By substituting Sc3+ by Mg2+ in PMN–PSN ceramics relaxation slows down, and for relaxors (x = 0.2) the most probable relaxation frequency decreases on cooling according to Vogel–Fulcher law.  相似文献   

19.
Bi2Zn2/3Nb4/3O7 thin films were deposited at room temperature on Pt/Ti/SiO2/Si(1 0 0) and polymer-based copper clad laminate (CCL) substrates by pulsed laser deposition. Bi2Zn2/3Nb4/3O7 thin films were deposited in situ with no intentional heating under an oxygen pressure of 4 Pa and then post-annealed at 150 °C for 20 min. It was found that the films are still amorphous in nature, which was confirmed by the XRD analysis. It has been shown that the surface roughness of the substrates has a significant influence on the electrical properties of the dielectric films, especially on the leakage current. Bi2Zn2/3Nb4/3O7 thin films deposited on Pt/Ti/SiO2/Si(1 0 0) substrates exhibit superior dielectric characteristics. The dielectric constant and loss tangent are 59.8 and 0.008 at 10 kHz, respectively. Leakage current density is 2.5 × 10?7 A/cm2 at an applied electric field of 400 kV/cm. Bi2Zn2/3Nb4/3O7 thin films deposited on CCL substrates exhibit the dielectric constant of 60 and loss tangent of 0.018, respectively. Leakage current density is less than 1 × 10?6 A/cm2 at 200 kV/cm.  相似文献   

20.
V2O5/Nb2O5 catalysts with various V2O5 contents were prepared by impregnation and characterized by various techniques in detail. Oxidative dehydrogenation of ethane was carried out in a fixed bed quartz reactor at 500–600 °C. XPS analysis indicated a clear enrichment of vanadium on the near-surface-region and UV–vis diffuse reflectance spectroscopy revealed the nature of VOx structures formed. 10 wt.% V2O5/Nb2O5 catalyst has displayed the best performance (X = 28%, S = 38% at 600 °C) due to enrichment of vanadium in the near-surface-region and formation of optimum amount of monomeric/oligomeric VOx species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号