首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(8):6363-6370
The influence of partial replacement of Ti4+ ions by Te4+ in calcium copper titanate lattice on dielectric and non-linear current- voltage (I–V) characteristics was systematically studied. There was a remarkable increase in the values of the nonlinear coefficient (α) with Te4+ doping concentration in CaCu3Ti4-xTexO12 (where, x=0, 0.1, 0.2).For instance, the α values increase from 2.9 (x=0) to 22.7 (x=0.2) for ceramics sintered at 1323 K/8 h. The room temperature value of current density (J) at the electrical field of 250 V/cm for CaCu3Ti3.8Te0.2O12 ceramics is almost 400 times higher than that of the pure CaCu3Ti4O12 ceramics sintered at 1323 K. A systematic investigation into I–V behaviour as a function of temperature gave an insight into the conduction mechanisms of undoped and doped ceramics of calcium copper titanate (CCTO). The calculated potential barrier value for doped ceramics (~ 0.21 eV) dropped down to almost one third that of the undoped ceramics (~ 0.63 eV).  相似文献   

2.
The dielectric and direct piezoelectric responses in doped and undoped Pb(Zr1−xTix)O3, with x = 0.40, 0.47 and 0.60, are experimentally studied. The permittivity and the direct piezoelectric coefficient have been measured by applying subswitching ac electric field and high ac mechanical stress. The influence of the type of defects and their concentrations on the non-linear response have been explored. The experimental data show a considerable mobility increase of ferroelectric–ferroelastic domain walls in donor-doped samples. The correlation between the dielectric constant and dielectric losses is discussed in terms of the Rayleigh law. Our results reveal that the influence of reversible and irreversible domain wall movements on the non-linear dielectric response is determined by defects associated with dopants. The role played by the crystallographic phase in the non-linear response is also analyzed.  相似文献   

3.
Microstructure, temperature and frequency dependent dielectric and energy storage properties of Ba0.3Sr0.475La0.12Ce0.03Ti1−xMnxO3(x = 0  0.005) have been investigated with X-ray diffractometer, and scanning electron microscope, broad band dielectric spectrometer and ferroelectric analyzer. The doping of Mn substantially decreased the dielectric loss, but made some of Ce3+ be oxidized to Ce4+ entering into B-site, which resulted in the formation secondary phases. For the Mn-doped composition, extremely low dielectric loss (10−5 order of magnitude at 10 kHz) could be obtained at room temperature. The relaxation mechanism at low temperature is of the dipole type for the undoped composition and that at high temperature (>500 K) is governed by the trap controlled ac conduction, respectively. The energy storage properties were improved by the doping with Mn due to the increase of insulation. Maximum energy density of 0.953 J/cm3 could be obtained for x = 0.003 composition with the BDS of 247 kV/cm and efficiency of 93%.  相似文献   

4.
《Ceramics International》2016,42(11):13242-13247
Considering the contribution of the mixed valence structure of Ti3+ and Ti4+ to the semiconductivity of grain, compositions with the formula of Y2/3Cu3Ti4+xO12 were designed and prepared. The dielectric bulk responses of Y2/3Cu3Ti4+xO12 ceramics were explored in detail. Changing Ti stoichiometry gives rise to an increase of the intrinsic permittivity. Y2/3Cu3Ti3.925O12 ceramic exhibits a higher intrinsic permittivity of ~120 at 60 MHz than that of pure Y2/3Cu3Ti4O12 ceramics (87 at 60 MHz). Additionally, the activation energies of bulk responses are significantly enhanced by changing Ti stoichiometry, which is closely linked with the increase of Ti3+/Ti4+.  相似文献   

5.
《Ceramics International》2017,43(12):8664-8676
Single-phase Ca1−3x/2TbxCu3Ti4−xTbxO12 (0.025≤ x≤0.075) (CTCTT) ceramics with a cubic perovskite-like structure and a fine-grained microstructure (1.6‒2.3 µm) were prepared using a mixed oxides method. The results revealed that mixed valence states of Cu2+/Cu+, Ti4+/Ti3+, and Tb3+/Tb4+ coexisted in CTCTT. A multiphonon phenomenon in the Raman scattering at 1148, 1323, and 1502 cm−1 was reported for undoped and doped CTTO. Tb was mainly incorporated in the interior of the CTCTT grains rather than on the surface. The dielectric permittivity of CTCTT (εr'RT =3590‒5200) decreased relative to CCTO (εr'RT =10240) at f =1 kHz, but the dielectric loss of CTCTT (the minimum value of tan δ=0.12 at RT) increased as a result of Tb doping. The defect chemistry of CTCTT is discussed. The internal barrier layers capacitance (IBLC) model was adopted for impedance spectroscopy (IS) analysis. The activation energies of the grain boundaries (Egb) and semi-conductive grains (Eg) for CTCTT were determined to be 0.52 eV and 104 meV, respectively. The IS and defect chemistry analyses confirmed that the decrease in the dielectric permittivity was mainly due to a decrease in conductivity in the semiconducting CTCTT grains caused by the acceptor effect of Tb4+ at the Ti site, which resulted in a decrease in the IBLC effect.  相似文献   

6.
《Ceramics International》2016,42(4):5286-5290
In the present work, we have attempted to reduce the effect of coring effect in the titanate ceramic system BaTi4O9 (BT4) by doping it with Mn4+. The microwave dielectric BaTi4O9 ceramics doped with 0, 0.5 and 1.0 mol% Mn4+ were synthesized by conventional ceramic processing route. The XRD studies confirmed a single phase crystalline structure for all the ceramic samples studied. The SEM micrographs of the ceramics reveal a microstructural change leading towards a more uniform grain size distribution as the Mn4+ content increases to 1.0 mol%. In the low frequency region (100 Hz to 1 MHz), the temperature stability of dielectric properties exhibits a marked improvement with the increasing amount of Mn4+ in the ceramic system. In the microwave frequency region (9.3 GHz), Q-factor increases from 11,625 GHz to 46,500 GHz for BaTi4O9 ceramic doped with 1.0 mol% Mn4+. The present paper reveals that the commonly observed degradation of dielectric properties due to coring effect in the BaTi4O9 ceramic system can be controlled by doping it with an appropriate quantity of Mn4+.  相似文献   

7.
The effect of Er3+ doping on the structure and thermoelectric transport properties of CdO ceramics was investigated. The solubility limit of Er3+ in CdO was very small and that additions of more than about 0.5 at% Er3+ resulted in the presence of Er2O3. With the addition of Er3+, the average grain size of Cd1?xErxO (0  x  0.015) decreased and the carrier concentration as well as mobility increased at room temperature. A small amount of Er3+ doping resulted in a marked increase of electric conductivity and a moderate decrease of Seebeck coefficient. Although Er3+ doping also leaded to an increase in thermal conductivity, a large ZT of 0.2 was achieved in x = 0.005 sample at 723 K due to the obvious improvement of power factor. The results demonstrate that CdO:Er is a new promising n-type thermoelectric material.  相似文献   

8.
The effects of structural characteristics on the dielectric properties of (Zn1/3A2/3)0.5(Ti1?xBx)0.5O2 (A = Nb5+, Ta5+, B = Ge4+, Sn4+) (0.1  x  0.3) ceramics were investigated at microwave frequency. The sintered specimens showed solid solutions with a tetragonal rutile structure within the solid solution range of compositions. With an increase of BO2, the temperature coefficient of resonant frequency (TCF) and dielectric constant (K) decreased with a decrease of oxygen octahedral distortion and dielectric polarizabilites, respectively. However, the quality factor (Qf) of the sintered specimens was increased with BO2 due to the reduction of Ti4+ ions. The Qf value of the specimens with A = Ta was higher than that of the specimens with A = Nb.  相似文献   

9.
The subsolidus cubic pyrochlore phases in the Bi2O3–MgO–Ta2O5 (BMT) system were prepared with the proposed formula, Bi3+(5/2)xMg2?xTa3?(3/2)xO14?x (0.12  x  0.22). Replacement of smaller cations, Mg2+ and Ta5+ by larger Bi3+ cations with considerable oxygen non-stoichiometry within structure was proposed. The synthesised samples were confirmed phase pure by X-ray powder diffraction and their refined lattice parameters were in the range of 10.5532(4)–10.5672(9) Å. The grain sizes of the samples determined by SEM analysis were in the range of 0.6–10.60 μm and their average relative densities were more than 80%. Five infrared-active modes were also observed in their FTIR spectra due to their metaloxygen bonds. The BMT pyrochlores were highly electrical resistive with high dielectric constants, ?′ in the range of ~70–85; dielectric losses, tan δ in the order of 10?3 at frequency 1 MHz and a negative temperature coefficient of permittivities, TC?′ of ~?158 to ?328 ppm/°C.  相似文献   

10.
The anti-reduction of Ti4+ ions in Ba4.2Sm9.2Ti18O54 (BST) ceramics at high sintering temperature over 1300 °C was investigated. MgO, Al2O3 and MnO2 were added separately to suppress the reduction of Ti4+ ions so as to improve the microwave dielectric properties of BST ceramics. The microstructure of BST ceramics was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) was used to study the electroconductivity of BST ceramics and valency changes of Ti ions. The results showed that MgO or Al2O3, when acting as an acceptor, could effectively suppress the reduction of Ti4+ ions and significantly improve the Q × f values of BST ceramics at the cost of dielectric constant. Meanwhile, MnO2 as an oxidant had also improved the Q × f values but with no decrease in dielectric constant. Excellent microwave dielectric properties were achieved in Ba4.2Sm9.2Ti18O54 ceramics doped with 0.2 wt.% Al2O3 sintered at 1340 °C for 3 h: ?r = 76.9, Q × f = 10,120 GHz and τf  = ?22.7 ppm/°C.  相似文献   

11.
A/B site co-substituted (Ca1?0.3xLa0.2x)[(Mg1/3Ta2/3)1?xTix]O3 ceramics (0.1  x  0.5) were prepared by solid state reaction and the structures, microstructures and dielectric properties were investigated. B site 1:2 cation ordering and oxygen octahedra tilting lead to monoclinic symmetry with space group P21/c for x = 0.1. For x above 0.1, the ordering was destroyed and the crystal structure became orthorhombic with space group Pbnm. The B site 1:2 cation ordering tended to be destroyed to form 1:1 ordering by the A site La3+ substitution. The dielectric constant increased linearly with increasing content of Ti4+ as the increasing second Jahn–Teller distortion enhanced the B site cation rattling. The temperature coefficient of resonant frequency and Qf values showed abnormal variations, which were refined to be caused by the increasing A site cation vacancy and diffused distribution of small size ordering domains respectively. Good combination of microwave dielectric properties was obtained at x = 0.5, where ?r = 48, Qf = 21,000 GHz and τf = 2.2 ppm/°C.  相似文献   

12.
《Ceramics International》2016,42(9):10758-10763
Large size Ba4.2Nd9.2Ti18O54 (BNT) ceramics doped with MnCO3, CuO and CoO were prepared by the conventional solid-state method. Only a single BaNd2Ti4O12 phase was formed in all samples. No second phase was found in the XRD patterns. The bulk density increases slightly because of the dopants. The SEM results showed that the grain size of Mn2+and Cu2+-doped BNT ceramics became larger with the increasing amount of dopants. The permittivity of all samples stays the same. However, the Q×f value of BNT ceramics increases by doping, especially with Mn2+ ions. The conductivity of BNT ceramic doped with Mn2+(0.5 mol‰) under high temperature is lower than that without doping. There are fewer defects in Mn2+-doped BNT ceramics. The XPS results indicated that Ti reduction was suppressed in BNT ceramics doped with 0.5 mol‰ Mn2+. BNT ceramics doped with 0.5 mol‰ Mn2+ ions sintered at 1320 °C for 2 h exhibited good microwave dielectric properties, with εr=88.67, Q×f=7408 GHz and τf = 82.98 ppm/°C.  相似文献   

13.
Tunable Ba6Ti2(Nb1−xTax)8O30 (BTN-xTa; x = 0, 0.25, 0.4) thin films with a tetragonal tungsten bronze structure (TTB) were deposited on platinized Si substrates using the pulsed laser deposition (PLD) technique and their properties were investigated from the viewpoint of orientation and ferroelectric phase transition. Crystal structures and dielectric properties were characterized using an X-ray diffractometer and an impedance analyzer. Pure BTN (BTN-0Ta) thin films showed tunability as high as 60% and the tunability decreased as the amounts of Ta-substitution increased at 150 kV/cm and at 1 MHz. The dielectric constants also decreased from 436 to 88 at 1 MHz through the Ta-substitution. The low tunability and dielectric constants of Ta-substituted thin films were mainly ascribed to the lowered ferroelectric transition temperature (Tc). Ferroelectric BTN (BTN-0Ta) thin films may have been changed into a paraelectric state through the Ta-substitution since the Tc of BTN thin films were shifted to temperatures far below room temperatures (approximately −60 °C).  相似文献   

14.
《Ceramics International》2016,42(13):14749-14753
Sm2(Zr1–xTix)2O7 (0≤x≤0.15) ceramics have been fabricated by pressureless-sintering method at 1973 K for 10 h in air. The influence of TiO2 doping on microstructure and thermo-optical properties of Sm2(Zr1–xTix)2O7 ceramics is investigated by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The partial substitution of Ti4+ for Zr4+ results in a significant increase in emissivity at low wavelengths contrasted with undoped Sm2Zr2O7. Sm2(Zr0.85Ti0.15)2O7 ceramic exhibits a high emissivity of above 0.70 at 1073 K in a wavelength range of 3–16 µm, where the highest value at this temperature is more than 0.90 especially in the wavelength range of 9–14 µm. FT-IR spectra and optical absorption spectra unveil the mechanisms of enhanced emissivity in Sm2(Zr1–xTix)2O7 (0.05≤x≤0.15) ceramics in the intermediate infrared range, especially at the wavelengths of 3–8 µm, due to Ti4+ ion substitution for Zr4+ ion.  相似文献   

15.
《Ceramics International》2017,43(13):9838-9845
The structural and luminescent properties of Eu3+ doped TiO2 nanophosphors synthesized by low cost combustion method were investigated. The X-ray diffraction analysis revealed that crystallite size decreases with doping concentration. Lattice volume expansion occurred due to the substitution of Ti4+ ions by larger ionic radii ions Eu3+. FESEM images showed prepared phosphors to be nano size spherical shaped particles. Energy band gap of 3 mol% Eu3+ doped samples decreased to 3.15 eV due to doping effect. The Eu3+ doped TiO2 nanophosphors exhibited main red emission peak centered at 616 nm under 395 nm UV light excitation. Concentration quenching was observed at 3 mol% doping, that has been ascribed to dipole-dipole interaction. The covalent nature of Eu-O bond and environment around Eu3+ ions were discussed using Judd-Ofelt (J-O) intensity parameters. Internal quantum efficiency was calculated using excited state lifetime 5D0 state of Eu3+ ion and J-O theory. The CIE colour coordinates and colour purity were calculated using the spectral energy distribution function. Low excited state life time indicated that Eu3+ doped TiO2 can be used as red emitting phosphor for white light emitting diode applications.  相似文献   

16.
《Ceramics International》2017,43(16):13750-13758
A series of Mn doped BiFeO3 with composition BiMnxFe1−xO3 (x = 0.0, 0.025, 0.05, 0.075, 0.1) was synthesized via a citrate precursor method. Structural, morphological, optical, electrical and magnetic properties were investigated by using various measurement techniques. XRD patterns confirmed that the materials possess distorted rhombohedral structure with space group R3c. Average crystallite size was found to be in the range 18–36 nm. A decrease in the value of lattice parameters has been observed due to contraction of unit cell volume with Mn doping. Higher tensile strain for the prepared nanoparticles was observed in Hall-Williamson Plot. Field Emission Scanning Microscopy (FESEM) showed the spherical, uniform, dense nanoparticles in the range 80–200 nm. Reduction in grain size was observed which may be due to suppression of grain growth with Mn doping. FTIR studies reported two strong peaks at 552 cm−1 and 449 cm-1 which confirmed the pervoskite structure. Dielectric properties were studied by measuring the dielectric constant and loss in the frequency range 1 kHz to 1 MHz. Magnetic hysteresis loop showed the retentivity (Mr) increasing from 0.0514 emu/g of BFO to 0.0931 emu/g of 10% Mn doping. Coercivity was found to increase upto 0.0582 T for 5% Mn doping and then reduced to 0.0344 T for 7.5% Mn doping. Saturation magnetization was observed to increase from 0.6791 emu/g for BFO to 0.8025 emu/g for 7.5% and then reduced to 0.6725 emu/g for 10% Mn doping in BFO. Improvement in dielectric and magnetic properties makes this material as a promising candidate for multifunctional device applications.  相似文献   

17.
In this study, investigations have been made on the crystal structure, surface morphology, dielectric and electrical properties of tungsten doped SrBi2(WxTa1−x)2O9 (0.0  x  0.20) ferroelectric ceramics. Dielectric measurements performed as a function of temperature at 1, 10 and 100 kHz show an increase in Curie temperature (Tc) over the composition range of x = 0.05–0.20. W6+ substitution in perovskite-like units results in a sharp dielectric transition at the ferroelectric Curie temperature with the dielectric constant at their respective Curie temperature increasing with tungsten doping. The dielectric loss reduces significantly with tungsten addition. The temperature dependence of ac and dc conductivity vis-à-vis tungsten content shows a decrease in conductivity, which is attributed to the suppression of oxygen vacancies. The activation energy calculated from the Arrhenius plots is found to increase with tungsten content.  相似文献   

18.
Doping behaviors of NiO and Nb2O5 in BaTiO3 in two doping ways and dielectric properties of BaTiO3-based X7R ceramics were investigated. When doped in composite form, the additions rendered higher solubility than that doped separately due to the identical valence between the complex (Ni1/32+Nb2/35+)4+ and Ti4+. NiO–Nb2O5 composite oxide was more effective in broadening dielectric constant peaks which was responsible for the temperature-stability of BaTiO3 ceramics. A reduction in grain size was observed in the specimens with 0.5–0.8 mol% NiO–Nb2O5 composite oxide, whereas the abnormal growth of individual grains took place in the 1.0 mol% NiO–Nb2O5 composite oxide-doped specimen. When the specimen of BaTiO3 doped with 0.8 mol% NiO–Nb2O5 composite oxide was sintered at 1300 °C for 1.5 h in air, good dielectric properties were obtained and the requirement of (EIA) X7R specification with a dielectric constant of 4706 and dielectric loss lower than 1.5% were satisfied.  相似文献   

19.
《Ceramics International》2016,42(9):10808-10812
The structural, magnetic, and dielectric properties of the Y1−xHoxFe0.5Cr0.5O3 (x=0, 0.05, 0.1, 0.3, and 0.5) compounds have been investigated. Rietveld refinement of the XRD patterns shows that the compounds possess orthorhombic perovskite structure. The dual magnetization reversal is observed in the samples with x=0.05 and 0.1, and it vanishes when x≥0.3. Ferromagnetic-like behavior with large coercive fields is observed in all Ho3+ doped YFe0.5Cr0.5O3 samples, indicating a doping induced metamagnetic behavior. This abnormal magnetization behavior can be explained by the antiparallel magnetic coupling between the Ho3+ and the canted Cr3+/Fe3+ moments, as well as the Ho–O–Ho magnetic interaction. The dielectric behavior in the frequency range from 100 Hz to 10 MHz is investigated. The low doped samples (x=0, 0.05, and 0.1) exhibit relaxation-like dielectric behavior and colossal dielectric constant in a wide temperature and frequency range. The dual magnetization reversal under low magnetic field makes these materials attractive candidates for the magnetic dual sensor devices.  相似文献   

20.
The (micro)structural and electrical properties of undoped and Er3+-doped BaTi0.85Zr0.15O3 ceramics were studied in this work for both nominal Ba2+ and Ti4+ substitution formulations. The ceramics were produced from solid-state reaction and sintered at 1400 °C for 3 h. For those materials prepared following the donor-type nominal Ba1?xErx(Ti0.85Zr0.15)O3 composition, especially, Er3+ however showed a preferential substitution for the (Ti,Zr)4+ lattice sites. This allowed synthesis of a finally acceptor-like, highly resistive Ba(Ti,Zr,Er)O3?δ-like system, with a solubility limit below but close to 3 cat.% Er3+. The overall phase development is discussed in terms of the amphoteric nature of Er3+, and appears to mainly or, at least, partially also involve a minimization of stress effects from the ion size mismatch between the dopant and host cations. Further results presented here include a comparative analysis of the behavior of the materials’ grain size, electrical properties and nature of the ferroelectric-to-paraelectric phase transition upon variation of the formulation and Er3+ content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号