首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用固相法制备了 Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3–SrTiO3(NBT–KBT–BT–ST)陶瓷,该体系是按(1–2x)(0.8NBT–0.2KBT)–x(0.94NBT–0.06BT)–x(0.74NBT–0.26ST) (x = 0.10、0.20、0.25、0.30、0.35、0.40、0.45)组合而成的,研究了该系陶瓷的结构与电性能。结果表明:所有样品都处于三方–四方准同型相界区域。该系陶瓷在准同型相界附近表现出了优异的压电性能,压电常数 d33、机电耦合系数 kp和剩余极化强度 Pr随 x 的增加先升高后降低,其中 x=0.35 陶瓷的电性能最佳:d33= 210 pC/N,kp= 0.319,Pr= 39.3 μC/cm2,Ec= 20.2 kV/cm,是一种良好的无铅压电陶瓷候选材料。依据准同型相界组成的线性组合规律来寻找具有优异压电性能的 NBT–KBT–BT–ST 陶瓷准同型相界组成是可行的。  相似文献   

2.
《Ceramics International》2017,43(10):7653-7659
Lead-free (1−x)(0.75Bi0.5Na0.5TiO3–0.25Bi0.5K0.5TiO3)–xBiAlO3 (BNT–BKT–100xBA, x=0–0.10) ceramics were prepared by two-step sintering method and their phase structure, micro morphology and electrical properties were systematically investigated. X-ray diffraction analysis indicates a pure perovskite phase for x≤0.06 as well as a structural evolution from a tetragonal toward a pseudocubic phase. Transmission electron microscopy study of the x=0.04 composition reveals the existence of antiferroelectric phase with a0a0c+ oxygen octahedron tilting which is in the form of nano-domains. Polarization-electric field and current-electric field hysteresis loops demonstrate that the increase of BA concentration destroys the ferroelectric order and strengthens antiferroelectric order. A much enhanced energy storage density of 1.15 J/cm3 and efficiency of 73.2% is achieved under 105 kV/cm at x=0.06. In addition, its energy storage property is found to depend weakly on temperature within the measurement range of 25–150 °C.  相似文献   

3.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

4.
Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系无铅压电陶瓷的制备工艺研究   总被引:12,自引:0,他引:12  
利用XRD、SEM等分析技术 ,研究了Na0 .5Bi0 .5TiO3 -K0 .5Bi0 .5TiO3 系无铅压电陶瓷的合成温度 ,烧成工艺条件对陶瓷晶体结构、压电性能的影响。结果表明 ,合成温度提高有利于主晶相的形成 ,适当延长保温时间有利于材料的压电性能。该体系随着KBT含量的增加 ,烧结温度提高 ,烧结温度范围变窄。同时研究了极化工艺条件对材料压电性能的影响表明 ,提高极化电场和适当提高极化温度有利于压电性能的提高 ,但过高的温度由于受到材料高温下退极化的影响而导致材料压电性能变差  相似文献   

5.
主要研究了极化电场,极化时间和极化温度等工艺参数对Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系无铅压电陶瓷介电和压电性能的影响。结果表明:极化电场和极化温度对压电陶瓷的介电、压电性能影响较大,而极化时间则影响较小。适宜的极化电场是3~3.5kV/mm,极化温度70~80℃,极化时间为10~15min。  相似文献   

6.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

7.
A composition-induced pseudocubic–tetragonal structural transition was found to be accompanied by a relaxor phase transformation in xBi(Mg0.5Ti0.5)O3–(0.75  x)PbTiO3–0.25(Bi0.5Na0.5)TiO3 ternary solid solutions. Dielectric and ferroelectric measurements suggest the coexistence of ergodic and nonergodic relaxor phases within a single pseudocubic phase zone for samples with 0.50 < x < 0.51 where large electromechanical strains of up to 0.43% (Smax/Emax = 621 pm/V) can be generated. The mechanism was mainly ascribed to the accumulated effects of field-modulated continuous and reversible transformations from a pseudocubic ergodic phase to a rhombohedral short-range ordered phase (but not nonergodic polar phase), and finally to a long-range ordered ferroelectric tetragonal phase. These procedures were found to be strongly dependent on the applied field magnitudes. These findings were reasonably approved by a couple of measurements such as dielectric–temperature–frequency spectrum, ferroelectric polarization/strain hysteresis loops, polarization current density curves and particularly ex situ Raman spectrum and in situ high-resolution synchrotron X-ray diffraction.  相似文献   

8.
随着经济的发展和人们环保意识的增强,无铅压电陶瓷的研究和开发越来越引起人们的重视.由于钛酸铋钠(Bi0.5Na0.5TiO3,简称为BNT)基无铅压电陶瓷具有良好的铁电性和高的剩余极化引起了广大学者的关注.本文分析了BNT基无铅压电陶瓷的研究进展,其中晶粒取向生长技术是提高其压电性能的一个重要途径.本文还介绍了一种溶剂热法制备织构化BNT基无铅压电陶瓷的方法.  相似文献   

9.
10.
Lead-free relaxor ferroelectric ceramics (1?x)(K0.5Bi0.5)TiO3xBi(Ni0.5Ti0.5)O3 were prepared by a conventional solid-state route, the phase transition behavior and corresponding electrical properties were investigated. A typical morphotropic phase boundary (MPB) between rhombohedral and tetragonal ferroelectric phases was identified to be in the range of 0.05<x<0.07 where the optimum piezoelectric and electromechanical properties of d33=126 pC/N and kP=18% were achieved. Most importantly, a high Curie temperature ~320 °C, around which the material shows a typical relaxor ferroelectric behavior characterized by the presence of diffuse phase transition and frequency dispersion, was obtained in MPB compositions, significantly higher than those of some existing MPB lead-free titanate systems. These results demonstrate a tremendous potential of the studied system for device applications.  相似文献   

11.
12.
In this study, solid solution ceramics of (1−x)Bi0.5K0.5TiO3xCaTiO3 (BKT-CT, x = 0, 0.12, 0.15, 0.18, 0.21, and 0.25) were prepared. A phase transition from the tetragonal symmetry to the pseudocubic symmetry is discovered near x = 0.25. The reasons for the appearance of the pseudocubic phase were discussed. The compositions of x ≤ 0.21 show the ferroelectric ordering at room temperature. The remnant polarization (Pr) is 22.4 μC/cm2 for the x = 0.15 composition. The temperature dependence of the relative permittivity suggests two dielectric anomalies for x ≤ 0.18. The dielectric anomaly in the low-temperature range is related to a spontaneous transition between the ferroelectric and relaxor states. The temperature (TF-R) for the transition decreases with the CT addition, falling from 211°C for x = 0.12-134°C for x = 0.18. Only one relaxor-like dielectric anomaly was observed for x ≥ 0.21. The thin double ferroelectric hysteresis loops have been observed during the ferroelectric-relaxor transition process for x ≥ 0.21. The maximum electrostrain (Sm) reaches 0.155% at 100°C for x = 0.21. The low-temperature Raman measurement suggests the intrinsic tetragonal distortions for x = 0.25.  相似文献   

13.
拓扑化学反应制备片状Na0.5Bi0.5TiO3粉体的研究   总被引:1,自引:0,他引:1  
通过熔盐法制备出具有铋层结构的前驱体Na0.5Bi4.5Ti4O15,其取向度f值(Lotgering factor法)高达0.9.粉体Na0.5Bi4.5Ti4O15再与NaaCO3和TiO2发生拓扑化学反应,铋层状结构的Na0.5Bi4.5Ti4O15完全转变成钙钛矿结构的Na0.5Bi0.5TiO3(NBT),所得到NBT粉体保留了NBIT的层状形貌,其厚度约0.4μm,长度为5-10μm,显示出较高的各向异性.研究了烧成温度对前躯体NBIT微粒形态的影响.通过SEM分析,固相法,熔盐法和拓扑反应合成的NBT粉体微观结构显示出巨大的差异.  相似文献   

14.
《Ceramics International》2017,43(9):7271-7277
Colossal permittivity (CP, ε>104) behavior in BaTiO3–Na0.5Bi0.5TiO3 (BT-NBT) ceramics has been studied, which showed extremely high permittivity up to ~105. Dielectric properties of samples showed Debye-like relaxations in the frequency range 20 Hz–30 MHz. Two different polarizations located in grain boundaries and grains respectively are responsible for the CP behavior and the models of defect charge compensation achieved by niobium doping are proposed to explain the phenomenon of abnormal variation of dielectric constant.By using defect engineering, a Nb-doped BaTiO3 ceramics with stable colossal permittivity (εr =1.3×104 at 1 kHz and room temperature),high bulk resistivity (>1010 Ω·cm) as well as relative low dielectric loss (tanδ~0.06) has been obtained over a wide temperature range of −55–150 °C, satisfying IEA X8R specification, which has a potential application prospect in high capacity solid supercapacitor.  相似文献   

15.
Bi0.5Na0.5TiO3xBaTiO3 (BNT–xBT) nano-powders are successfully synthesized by a modified citrate method. The as-prepared BNT-BT powders and the sintered ceramics are homogeneous with a pure perovskite crystal structure. The effects of Ba2+ substitutions for (Bi0.5Na0.5)2+ in the A-sites of Bi0.5Na0.5TiO3 on its phase transformations are explored. The transformations among ferroelectric (FE), anti-ferroelectric (AFE) and paraelectric (PE) states in these ceramics are characterized using ferroelectric hysteresis tests, modulated differential scanning calorimetry and dynamic mechanical analysis. The FE-AFE transition in BNT–xBT with 0≤x≤0.15 is found to relate with a structural transformation which is a first-order phase transition. The mechanical and thermal analyses provide evidence that AFE state (0≤x≤0.15) could be associated with the incommensurate modulation of rhombohedral structures while the mechanisms of forming AFE state in BNT–xBT (x>0.15) could be different.  相似文献   

16.
溶胶-凝胶法合成(Na0.5Bi0.5)TiO3微粉   总被引:1,自引:0,他引:1  
以钛酸四丁酯、硝酸铋、醋酸钠和冰醋酸为原料,利用溶胶-凝胶工艺得到透明凝胶,经干燥后煅烧成(Na0.5Bi0.5)TiO3微粉。通过对溶胶体系水/醇盐的摩尔比、初始pH值及胶凝温度对(Na0.5Bi0.5)TiO3凝胶体系溶胶-凝胶形成过程影响的研究,发现水/醇盐比R在35≤R≤60,pH在2.2~3.5,反应温度在40~60℃时,能够得到透明的溶胶;通过TG-DTA、SEM、X-ray等分析手段对(Na0.5Bi0.5)TiO3粉体进行测试,表明在650℃合成1h可以得到单一钙钛矿(Na0.5Bi0.5)TiO3晶体;采用TEM对(Na0.5Bi0.5)TiO3干凝胶粉体分析其粒径大小约为10nm。  相似文献   

17.
本实验采用柠檬酸盐法制备(NaBi)0.5TiO3无铅压电陶瓷粉体,系统研究了柠檬酸浓度、溶液pH值、煅烧温度等工艺条件对制备的影响。经研究分析,当柠檬酸浓度C=9%,溶液pH=7.5时,能形成透明、均匀、稳定的溶胶,且形成时间最短;650℃下煅烧2h能够合成单一的钙钛矿结构的钛酸铋钠晶相,比传统固相反应法煅烧温度降低了200℃。  相似文献   

18.
马麦霞  王元元 《硅酸盐通报》2008,27(6):1230-1234
以Bi(NO3)3·5H2O、Ti(OC4H9)4为原料,无水乙醇作溶剂,采用溶剂热法在常压下合成了Bi0.5Na0.5TiO3(简称为BNT)纳米粉体.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对BNT粉体进行了表征.并在常压溶剂热条件下研究了影响BNT晶体生长和形貌的主要因素.实验结果表明:反应温度为100 ℃,保温时间为2.5 h,NaOH浓度为12 mol·L-1,650 ℃下煅烧2 h时,能制备出单一的BNT粉体,且制得粉体的粒径尺寸约为100 nm.  相似文献   

19.
(1?x)(Bi0.5K0.5)TiO3xLiNbO3 ((1?x)BKT–xLN) lead-free relaxor ferroelectric ceramics were prepared by a conventional solid-state route and their phase transition behavior and the corresponding electrical properties were investigated. A morphotropic phase boundary separating rhombohedral and tetragonal phases was identified in the composition range of 0.015<x<0.03, where the improved electrical properties of piezoelectric constant d33=75 pC/N and electromechanical coupling factor kp=0.18 were obtained. Moreover, all samples show typical relaxor behavior characterized by the presence of diffuse phase transition and frequency dispersion. It was found that the dielectric relaxation behavior of BKT ceramics can be obviously enhanced with the addition of LN. In addition, the effect of the LN addition on the ferroelectric properties was also investigated by measuring polarization versus electric field hysteresis loops.  相似文献   

20.
One of the most promising candidates to replace lead-based compounds in actuator applications are Na0.5Bi0.5TiO3 (NBT)-based materials. K0.5Na0.5NbO3 (KNN)-modified NBT-BaTiO3 (NBT-BT) solid solutions exhibit giant large-signal strain–electric-field coefficients (Smax/Emax) exceeding 500 pm V?1. However, despite the promising properties of the ceramics reported in the literature, the synthesis of these materials remains challenging, leaving gaps in the understanding of the synthesis-property relationship. In this contribution, we investigate the microstructure and the electrical properties while changing the composition to destabilize the ferroelectric order in the material, which is the key to achieve large strain response. Measurements of dielectric and ferroelectric properties reveal that Na- or Ti-deficiency or excess of Bi decrease the ferroelectric-to-relaxor transition temperature and remnant polarization, indicating a destabilization of the ferroelectric order. Additionally, the use of KNO3 instead of K2CO3 as the potassium source in KNN results in an additional destabilizing effect on the ferroelectric order, which can be attributed to better incorporation of K+ into the perovskite structure. The results identify the key aspects of the synthesis of NBT-BT-KNN ceramics to obtain high Smax/Emax values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号