首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(3):4347-4353
A direct coagulation casting method for silicon nitride suspension via dispersant reaction was reported. Tetramethylammonium hydroxide (TMAOH) was used as dispersant to prepare silicon nitride suspension with high solid loading and low viscosity. Influences of TMAOH and pH value on the dispersion of silicon nitride powder were investigated. Glycerol diacetate (GDA) was used to coagulate the silicon nitride suspension. Influences of the concentration of glycerol diacetate on the viscosity and pH value of the suspension were investigated. It was indicated that high viscosity sufficient to coagulate the suspension was achieved by adding 1.0–2.0 vol% glycerol diacetate at 40–70 °C. The coagulation mechanism was proposed that the silicon nitride suspension was destabilized by dispersant reacting with acetic acid which was hydrolyzed from glycerol diacetate at elevated temperature. Coagulated samples could be demolded without deformation by treating 50 vol% silicon nitride suspensions with 0.2 wt% tetramethylammonium hydroxide and 1.0–2.0 vol% glycerol diacetate at different temperatures. Dense silicon nitride ceramics with relative density above 98.8% had been prepared by this method using glycerol diacetate as coagulating agent sintered by different methods.  相似文献   

2.
《Ceramics International》2017,43(12):8839-8844
Y2O3 transparent ceramics were prepared from alcoholic slurries of Y2O3 nanopowders via a slip-casting method to avoid the hydrolysis issue. Polyvinyl pyrrolidone (PVP), polyethylene glycol (PEG) and polyethylenimine (PEI) were used as dispersants to improve the rheological properties of the slurries. It was found that PEI is the most effective dispersant in ethanol. The adsorbed amount of PEI was evaluated by infrared absorption and rheology measurements. Y2O3 slurry with a solid loading of 20.8 vol% and a viscosity of <0.1 Pa s at the shear rate of 10 s−1 was obtained using 1.5 wt% PEI. The slurry yielded a homogeneous green body, and finally resulted in a high-quality Y2O3 ceramic with the in-line transmittance of 80% at 800 nm.  相似文献   

3.
Raman spectroscopy and neutron diffraction were used to study the stresses generated in zirconium diboride–silicon carbide (ZrB2–SiC) ceramics. Dense, hot pressed samples were prepared from ZrB2 containing 30 vol% α-SiC particles. Raman patterns were acquired from the dispersed SiC particulate phase within the composite and stress values were calculated to be 810 MPa. Neutron diffraction patterns were acquired for the ZrB2–SiC composite, as well as pure ZrB2 and SiC powders during cooling from ~1800 °C to room temperature. A residual stress of 775 MPa was calculated as a function of temperature by comparing the lattice parameter values for ZrB2 and SiC within the composite to those of the individual powders. The temperature at which stresses began to accumulate on cooling was found to be ~1400 °C based on observing the deviation in lattice parameters between pure powder samples and those of the composite.  相似文献   

4.
《Ceramics International》2016,42(8):9737-9743
In the present work, transparent Y2O3 ceramics were prepared via colloidal processing method from nano-sized Y2O3 powders. The effects of triammonium citrate (TAC) on the colloid stability of aqueous suspensions of nano-sized Y2O3 powders were studied. The surface properties of yttria powders were notably affected by the addition of TAC dispersant. The adsorption of TAC on the particle surface shifts the IEP to lower pH values and increases the absolute zeta potential in alkaline region. Rheological characterization of the investigated system revealed an optimal dispersant concentration of 1 wt%, which correlated well with the saturation adsorption of TAC on Y2O3 powder surfaces. The suspensions with solid loadings up to 35 vol% were achieved with further addition of Tetramethylammonium hydroxide (TMAH) into the dispersing system. The consolidated green bodies were treated by cold isostatic pressing to further increase the green density. Transparent Y2O3 ceramics were prepared after vacuum-sintering at 1700 °C for 5 h. The transmittances of the sample were 74.5% at 800 nm and 79.8% at 2000 nm, respectively.  相似文献   

5.
Current generation carbon–carbon (C–C) and carbon–silicon carbide (C–SiC) materials are limited to service temperatures below 1800 °C and materials are sought that can withstand higher temperatures and ablative conditions for aerospace applications. One potential materials solution is carbon fibre-based composites with matrices composed of one or more ultra-high temperature ceramics (UHTCs); the latter are intended to protect the carbon fibres at high temperatures whilst the former provides increased toughness and thermal shock resistance to the system as a whole. Carbon fibre–UHTC powder composites have been prepared via a slurry impregnation and pyrolysis route. Five different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2–20 vol% SiC, ZrB2–20 vol% SiC–10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation resistance has been studied using a purpose built oxyacetylene torch test facility at temperatures above 2500 °C and the results are compared with that of a C–C benchmark composite.  相似文献   

6.
《Ceramics International》2016,42(16):18215-18222
Porous MgAl2O4 ceramics were prepared via a low cost foam-gelcasting route using MgAl2O4 powders as the main raw material, ammonium polyacrylate as a dispersant, a small amount of modified carboxymethyl cellulose as a gelling agent, and TH-IV polymer as a foaming agent. The effects of additive's content, solid loading and gelling temperature on slurry's rheological behavior were investigated, and microstructures and properties of as-prepared porous MgAl2O4 ceramics examined. Based on the results, the roles played by the foaming agent in the cases of porosity, pore structure, pore size, mechanical properties and thermal conductivity were clarified. Porosity and pore sizes of as-prepared porous MgAl2O4 ceramics increased with increasing the foaming agent from 0.05 to 0.6 vol%. Porous MgAl2O4 ceramics with porosity of 75.1% and average pore size of 266 µm exhibited a compressive strength as high as 12.5±0.8 MPa and thermal conductivity as low as 0.24 W/(m K) (at 473 K).  相似文献   

7.
A direct coagulation casting method for silicon carbide ceramic suspension using dispersant crosslink reaction is reported. Polymer electrolyte (polyethyleneimine, PEI) was used as dispersant to prepare silicon carbide suspension. Common food additives (carboxymethyl cellulose, CMC) were used to coagulate the electrosteric stabilized silicon carbide suspension. There was a well disperse silicon carbide suspension with 0.2 wt% PEI at pH = 5-6. Influence of coagulant on viscosity and zeta potential of the silicon carbide suspension was investigated. It indicates that the high solid loading silicon carbide suspension can be destabilized and coagulated at elevated temperature. It can be attribute to the gradual decrease of electrosteric force due to the crosslink reaction between PEI and CMC. Silicon carbide wet green body with compressive strength of 1.99 MPa could be demolded at 70°C which is higher than that prepared by traditional DCC and dispersant reaction method for nonoxide ceramics. Dense silicon carbide ceramics with relative density above 98.8% and 99.3% had been prepared by liquid phase pressureless and hot pressed sintering, respectively.  相似文献   

8.
The influence of silicon carbide (SiC) particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide (ZrB2–SiC) ceramics was investigated. ZrB2-based ceramics containing 30 vol.% SiC particles were prepared from four different α-SiC precursor powders with average particle sizes ranging from 0.45 to 10 μm. Examination of the dense ceramics showed that smaller starting SiC particle sizes led to improved densification, finer grain sizes, and higher strength. For example, ceramics prepared from SiC with the particle size of 10 μm had a strength of 389 MPa, but the strength increased to 909 MPa for ceramics prepared from SiC with a starting particle size of 0.45 μm. Analysis indicates that SiC particle size controls the strength of ZrB2–SiC.  相似文献   

9.
Dense nanocomposites constituted from 70/30 vol% of hafnia–silicon carbide and were prepared by spark plasma sintering. Silicon carbide suppresses grain growth. The fracture strength of as prepared composites is 400–600 MPa. Oxidation up to 1600 °C in air for 10 h has minor influence on the mechanical strength, which is ascribed to the dense nature of the oxidation scale. The high density of the oxidation scale is attributed to a volume increase when silicon carbide oxidizes and reacts with hafnia to form hafnium silicate. The composite has a thermal conductivity of 14 W m−1 K−1 at room temperature. Design approaches for further enhancement of ultrahigh temperature properties of oxide/non-oxide composites are discussed.  相似文献   

10.
Highly resistive SiC ceramics were prepared by hot pressing α-SiC powders with Al2O3-Y2O3 additives with a 4:1 molar ratio. X-ray diffraction patterns, Raman spectra, electron probe microanalysis (EMPA), and scanning electron microscopy (SEM) images revealed that the bulk SiC ceramics consisted mostly of micron-sized 6H-SiC grains along with Y2O3 and Si clusters. As the additive content increased from 1 to 10 vol%, the electrical resistivity of the ceramics increased from 3.0 × 106 to 1.3 × 108 Ω cm at room temperature. Such high resistivity is ascribed to Al2O3 in which Al impurities substituting Si site act as deep acceptors for trapping carriers. More resistive α-SiC ceramics were produced by adding AlN instead of Al2O3. The highest resistivity (1.3 × 1010 Ω cm) was achieved by employing 3 vol% AlN-Y3Al5O12 (yttrium aluminum garnet, YAG) as an additive.  相似文献   

11.
Al2O3/SiC micro/nano composites containing different volume fractions (5, 10, 15, and 20 vol.%) of SiC were prepared by mixing a sub-micron alumina powder with respective amounts of either micro- or nano-sized silicon carbide powders. The powder mixtures were hot pressed 1 h at 1740 °C and 30 MPa in the atmosphere of Ar. The effect of SiC addition on the microstructure and mechanical properties, i.e. hardness, fracture toughness, and room temperature flexural strength were investigated. The flexural strength increased with increasing volume fraction of silicon carbide particles. The maximum flexural strength (655 ± 90 MPa) was achieved for the composite containing 20 vol.% of coarse-grained SiC, which is more than twice as high as in the Al2O3 reference. Hardness and fracture toughness were also moderately improved. The observed improvement of mechanical properties is mainly attributed to alumina matrix grain refinement and grain boundary reinforcement.  相似文献   

12.
SiC ceramics were prepared from nanosized β-SiC powder with different compositions of AlN and Y2O3 sintering additives by spark plasma sintering (SPS) at 1900 °C for 600 s in N2. The relative density of the sintered SiC specimens increased with increasing amount of AlN, reaching a relative density higher than 99%, while at the same time grain size decreased significantly. The smallest average grain size of 150 nm was observed for SiC sample sintered with 10 vol% of additives consisting of 90 mol% AlN and 10 mol% Y2O3. Fully dense nanostructured SiC ceramics with inhibited grain growth were obtained by the AlN additive and SPS technique. The flexural strength of the SiC body containing 70 mol% AlN and 30 mol% Y2O3 additives reached the maximum value of 1000 MPa. The SiC bodies prepared with AlN and Y2O3 additives had the fracture toughness of around 2.5 MPam1/2.  相似文献   

13.
In this paper, silicon carbide ceramics were prepared by aqueous gelcasting and pressureless sintering using Al2O3 and Y2O3 as the sintering additives. In order to develop well dispersed SiC slurries in the presence of sintering additives, the Al2O3 and Y2O3 powder was treated in the citric acid solution in advance. Zeta potential measurement showed that the isoelectric point (IEP) of Al2O3 and Y2O3 powder moved toward low pH region after treatment. Rheological measurement confirmed that the addition of as-treated powder showed very limited influence on the slurry properties as compared to that of untreated powder. SiC slurries with solid content of 54 vol% and enough fluidity can be developed. After gelcasting and pressureless sintering, SiC ceramics with nearly full density, fine grained and homogeneous microstructure can be obtained. Results showed that the surface treatment of Al2O3 and Y2O3 with citric acid is effective for the gelcasting process of SiC.  相似文献   

14.
《Ceramics International》2017,43(5):4344-4352
The corrosion behavior of silicon nitride (Si3N4) ceramics with a porosity of 46% at 1200–1500 °C under different conditions including dry O2, O2 containing 20 vol% H2O and Ar containing 20 vol% H2O is compared. The results show that porous Si3N4 ceramics exhibit good oxidation resistance up to 1200 °C. Their corrosion behavior varies depending on the temperature and atmosphere. Water vapor can obviously affect the morphology of the reaction product and thus accelerate the corrosion rate due to its specific inward diffusion mechanism and devitrified effect at high temperature. In view of the reaction kinetics, it proceeds in a diffusion-controlled manner in dry O2 while follows the parabolic-linear law at water-containing atmosphere. Furthermore, a new model considering both oxidation and volatilization reactions is established. These provide a baseline for expanding the application fields of non-oxide porous ceramics such as Si3N4 and silicon carbide (SiC) etc.  相似文献   

15.
《Ceramics International》2017,43(14):11361-11366
A novel temperature induced gelation method for alumina suspension using oleic acid as dispersant is reported. Non–aqueous suspension with high solid loading and low viscosity is prepared using normal octane as solvent. Influence of oleic acid on the dispersion of suspension was investigated. There was a well disperse alumina suspension with 1.3 wt% oleic acid. Influence of gelation temperature on the coagulation process and properties of green body was investigated. The sufficiently high viscosity to coagulate the suspension was achieved at −20 °C. The gelation temperature was controlled between the melting point of dispersant and solvent. The gelation mechanism is proposed that alumina suspension is destabilized by dispersant separating out from the solvent and removing from the alumina particles surface. The alumina green body with wet compressive strength of 1.07 MPa can be demolded without deformation by treating 53 vol% alumina suspension at −20 °C for 12 h. After being sintered at 1550 °C for 3 h, dense alumina ceramics with relative density of 98.62% and flexural strength of 371±25 MPa have been obtained by this method.  相似文献   

16.
Porous SiC/SiCN composite ceramics with heterogeneous pore structure and rod-like SiCN grains were fabricated by foaming and reaction sintering. The mixture slurry containing SiC and silicon as raw materials, cornstarch as binder, Y2O3 as sintering additive and an electrosteric dispersant was stirred with foams derived from pre-foaming using foaming agent. The casted green body was sintered at 1650 °C under nitrogen atmosphere. The results demonstrated that the porous SiC/SiCN ceramics exhibited hierarchical vias ranging from 1 μm to 1 mm and the rod-like crystalline SiCN grains generated in the SiC matrix.  相似文献   

17.
Dense SiC (97.3–99.2% relative density) of 1.1–3.5 μm average grain size was prepared by the combination of colloidal processing of bimodal SiC particles with sintering additives (Al2O3 plus Y2O3, 2–4 vol%) and subsequent hot-pressing at 1900–1950 °C. The fracture toughness of SiC was sensitive to the grain boundary thickness which was controlled by grain size and amount of oxide additives. A maximum fracture toughness (6.2 MPa m1/2) was measured at 20 nm of grain boundary thickness. The mixing of 30 nm SiC (25 vol%) with 800 nm SiC (75 vol%) was effective to reduce the flaw size of fracture origin, in addition to a high fracture toughness, leading to the increase of flexural strength. However, the processing of a mixture of 30 nm SiC (25 vol%)–330 nm SiC (75 vol%) provided too small grains (1.1 μm average grain size), resultant thin grain boundaries (12 nm), decreased fracture toughness, and relatively large defect of fracture origin, resulting in the decreased strength.  相似文献   

18.
《Ceramics International》2017,43(10):7958-7962
A ceramic particulate composite composed of oxide, and carbide ceramics was found to have high strength, hardness, and fracture toughness values. A composition consisting of Al2O3 with 15 vol% SiC and 15 vol% B4C additions was produced by hot-pressing at 1650 °C for 30 min, with full density reached after ~5 min at temperature. Both WB and WB2 were observed, with the W source presumably an impurity from WC milling media, and Al18B4O33 was also detected following densification. Strength was ~880 MPa, which is greater than values reported for comparable composites of Al2O3 containing 30 vol% SiC or B4C. Vickers hardness was ~21 GPa, and fracture toughness was ~4.5 MPa m½, comparable to values reported for the binary mixtures. The calculated critical flaw size of the material was similar to the size of the SiC/B4C clusters and microcracking at grain boundaries. The latter resulting from thermal expansion mismatch between the Al2O3 matrix and SiC/B4C reinforcing phases.  相似文献   

19.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

20.
《Ceramics International》2017,43(17):14798-14806
The oxidation behaviors of tantalum carbide (TaC)- hafnium carbide (HfC) solid solutions with five different compositions, pure HfC, HfC-20 vol% TaC (T20H80), HfC- 50 vol% TaC (T50H50), HfC- 80 vol% TaC (T80H20), and pure TaC have been investigated by exposing to a plasma torch which has a temperature of approximately 2800 °C with a gas flow speed greater than 300 m/s for 60 s, 180 s, and 300 s, respectively. The solid solution samples showed significantly improved oxidation resistance compared to the pure carbide samples, and the T50H50 samples exhibited the best oxidation resistance of all samples. The thickness of the oxide scales in T50H50 was reduced more than 90% compared to the pure TaC samples, and more than 85% compared to the pure HfC samples after 300 s oxidation tests. A new Ta2Hf6O17 phase was found to be responsible for the improved oxidation performance exhibited by solid solutions. The oxide scale constitutes of a scaffold-like structure consisting of HfO2 and Ta2Hf6O17 filled with Ta2O5 which was beneficial to the oxidation resistance by limiting the availability of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号