首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic state and microwave dielectric properties of MgAl2O4 prepared using solid-state (MA-S) and molten salt (MA-M) methods and those of Mg0.4Al2.4O4 (M04A24) were investigated. The λ values, which correspond to the fraction of Al3+ cations in tetrahedral sites, for MA-S, MA-M, and M04A24 were 0.23, 0.41, and 0.60, respectively. In molecular orbital calculations, a larger overlap was observed between Al-3s or Al-3p in tetrahedral sites and O-2p orbitals for M04A24, and the bond order for AlO at tetrahedral sites of M04A24 (0.241) was higher than those for MA-S (0.178) and MA-M (0.205). The dielectric constant, εr, for M04A24 (7.6) was lower than those for MA-S and MA-M (both 7.9), and the highest quality factor, Q·f, was obtained for M04A24 (235, 800 GHz). It was found that the covalency of the AlO bonds in the MO4 tetrahedra is closely related to the Q?f values of the present ceramics.  相似文献   

2.
The spinel-structured Zn1-3xAl2+2xO4 (x = 0–0.2) ceramics having defective structures were synthesized using the molten salt method, and their microwave dielectric properties and cation distributions were assessed. The 27Al solid-state nuclear magnetic resonance spectra of these ceramics demonstrate that they have an intermediate spinel structure in which the tetrahedral site occupancy increases from 0.03 to 0.64 as x increases. Moreover, crystal structure refinements suggest that cation vacancies are located at octahedral sites for x = 0.1 and 0.2. Based on these data, the introduction of cation vacancies at octahedral sites appears to enhance the preferential occupation of tetrahedral sites by Al3+. The εr of these ceramics slightly decreased from 8.5 to 8.2 with increasing x, while the Q·f value increased significantly, from 127,532 to 202,468 GHz, upon the introduction of cation vacancies. An intermediate spinel structure with preferential occupancy of tetrahedral sites by trivalent cations exhibits an enhanced Q·f value.  相似文献   

3.
Both the microstructure and microwave dielectric properties of sintered columbites with the composition A2+1+xNb2O6 (A2+ = Mg, Zn, Co) were analysed. The slight changes in the Nb/A ratio in studied systems have been found to noticeably affect the microwave quality factor (Q) of the ceramics. Regardless of the A2+ ion the dependencies of a Q-factor magnitude on chemical composition demonstrate rather a non-linear trend. Very low products Q × f measured for all studied systems at x < 0 can be attributed to the presence of secondary phase Nb2O5. At x  0 the Q × f magnitude passes through the maxima subject to the A2+ ion. The highest products Q × f  110,000 GHz have been found in the Mg and Zn-containing columbites at x = 0.03 and 0.01, respectively, whereas in the case of Co-containing analogues the maximum Q × f = 82,000 GHz corresponds to stoichiometric composition.  相似文献   

4.
Trirutile-structure MgTa2O6 ceramics were prepared by aqueous sol–gel method and microwave dielectric properties were investigated. Highly reactive nanosized MgTa2O6 powders were successfully synthesized at 500 °C in oxygen atmosphere with particle sizes of 20–40 nm. The evolution of phase formation was detected by DTA–TG and XRD. Sintering characteristic and microwave dielectric properties of MgTa2O6 ceramics were studied at different temperatures ranging from 1100 to 1300 °C. With the increase of sintering temperature, density, ?r and Q · f values increased and saturated at 1200 °C with excellent microwave properties of ?r  30.1, Q · f  57,300 GHz and τf  29 ppm/°C. The sintering temperature of MgTa2O6 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state method.  相似文献   

5.
(1 ? x)Ca0.6La0.267TiO3xCa(Mg1/3Nb2/3)O3 ceramics were prepared by a conventional solid-state ceramic route. The microstructure and microwave dielectric properties were investigated as a function of composition and sintering temperature. As the content of Ca(Mg1/3Nb2/3)O3 increased, the temperature coefficient of resonant frequency (τf) value decreased gradually. By appropriately adjusting the x value in the present ceramic system, a near-zero τf value could be achieved. The appropriate increase of sintering temperature could significantly improve Q·f value by influencing the grain growth. The optimal microwave dielectric properties with a dielectric constant (?r) of 52.4, Q·f of 36,428 GHz (at 5.8 GHz), and τf of 3.4 ppm/°C were obtained for the specimen 0.5Ca0.6La0.267TiO3–0.5Ca(Mg1/3Nb2/3)O3 sintered at 1490 °C for 4 h.  相似文献   

6.
A Li2ZnGe3O8 ceramic was investigated as a promising microwave dielectric material for low-temperature co-fired ceramics applications. Li2ZnGe3O8 ceramic was prepared via the conventional solid-state method. X-ray diffraction data shows that Li2ZnGe3O8 ceramic crystallized into a cubic spinel structure with a space group of P4132. Dense ceramic with a relative densities of 96.3% were obtained when sintered at 945 °C for 4 h and exhibited the optimum microwave properties with a relative permittivity (εr) of 10.3, a quality factor (Q × f) of 47,400 GHz (at 13.3 GHz), and a temperature coefficient of resonance frequency (τf) of −63.9 ppm/°C. The large negative τf of Li2ZnGe3O8 ceramic could be compensated by rutile TiO2, and 0.9Li2ZnGe3O8–0.1TiO20·1TiO2 ceramic sintered at 950 °C for 4 h exhibited improved microwave dielectric properties with a near-zero τf of −1.6 ppm/°C along with εr of 11.3 and a Q × f of 35,800 GHz (11.6 GHz). Moreover, Li2ZnGe3O8 was found to be chemically compatible with silver electrode when sintered at 945 °C.  相似文献   

7.
Pseudobrookite-type Mg5Nb4O15 ceramics were prepared by aqueous sol–gel process and microwave dielectric properties were investigated. Highly reactive nanosized Mg5Nb4O15 powders were successfully synthesized at 600 °C in oxygen atmosphere with particle sizes of 20–40 nm firstly and then phase evolution was detected by DTA-TG and XRD. Sintering characteristics and microwave dielectric properties of Mg5Nb4O15 ceramics were studied at different temperatures ranging from 1200 °C to 1400 °C. With the increase of sintering temperature, density, ?r and Q·f values increased, and then saturated at 1300 °C. Excellent microwave properties of ?r ~11.3, Q·f ~43,300 GHz and τf ~?58 ppm/°C, were obtained finally. The sintering temperature of Mg5Nb4O15 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state methods.  相似文献   

8.
(1-x)Mg0.90Ni0.1SiO3-xTiO2 (x = 0, 0.01, 0.03, 0.05) ceramics were successfully formed by the conventional solid-state methods and characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS), and their microstructure and microwave dielectric properties systematically investigated. It was observed that when TiO2 content increased from 0 to 5 wt%, the Qufo of the sample decreased from 118,702 GHz to 101,307 GHz and increases the τf value from −10 ppm/°C to +3.14 ppm/°C accompanied by a notable lowering in the sintering temperature (125 °C). A good combination of microwave dielectric properties (εr  8.29, Qufo  101,307 GHz and τf  −2.98 ppm/°C) were achieved for Mg0.90Ni0.1SiO3 containing 3 wt% of TiO2 sintered at 1300 °C for 9 h which make this material of possible interest for millimeter wave applications.  相似文献   

9.
SrLnGaO4 (Ln = La and Nd) ceramics with K2NiF4 structure were prepared by solid-state reaction approach, and the microwave dielectric properties and microstructures were characterized. The SrLaGaO4 and SrNdGaO4 ceramics with minor secondary phase, Sr3Ga2O6, were obtained by sintering at 1250–1350 °C for 3 h, and good microwave dielectric characteristics were achieved: the ceramics had (1) ɛ = 20.3, Q × f = 16,219 GHz, and τf = −33.5 ppm/°C for SrLaGaO4; and (2) ɛ = 21.4, Q × f = 16,650 GHz, and τf = 7.1 ppm/°C for SrNdGaO4.  相似文献   

10.
《Ceramics International》2007,33(6):951-955
The microwave dielectric properties of Sm(Zn1/2Ti1/2)O3 ceramics have been investigated. Sm(Zn1/2Ti1/2)O3 ceramics were prepared by conventional solid-state route with various sintering temperatures and times. The prepared Sm(Zn1/2Ti1/2)O3 exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. Higher sintered density of 7.01 g/cm3 can be produced at 1310 °C for 2 h. The dielectric constant values (ɛr) of 22–31 and the Q × f values of 4700–37,000 (at 8 GHz) can be obtained when the sintering temperatures are in the range of 1250–1370 °C for 2 h. The temperature coefficient of resonant frequency τf was a function of sintering temperature. The ɛr value of 31, Q  ×  f value of 37,000 (at 8 GHz) and τf value of −19 ppm/°C were obtained for Sm(Zn1/2Ti1/2)O3 ceramics sintered at 1310 °C for 2 h. For applications of high selective microwave ceramic resonator, filter and antenna, Sm(Zn1/2Ti1/2)O3 is proposed as a suitable material candidate.  相似文献   

11.
Low temperature cofired ceramics technology (LTCC) has been widely studied and used in wireless communication because of their outstanding capability for device miniaturization and integration. However, many commercial microwave dielectric materials have high sintering temperatures that pose challenge for cofiring with inner electrodes. Herein, two brannerite vanadate LiMVO6 (M = Mo, W) ceramics with intrinsically low sintering temperatures were prepared. Dense and stable LiMVO6 (M = Mo, W) ceramics could obtained at 640 °C for LiMoVO6 and 700 °C for LiWVO6. Favorable microwave dielectric properties were also obtained with εr = 13.3, Q × f = 12,460 GHz, and τf = +101.0 ppm/°C for LiMoVO6 and εr = 11.5, Q × f = 13,260 GHz, and τf = +163.8 ppm/°C for LiWVO6. Moreover, the relationship between crystal structure and microwave dielectric properties was studied by means of packing fraction, bond valence, and octahedral distortion. Their chemical compatibility with the metal electrodes were confirmed.  相似文献   

12.
Willemite ceramics (Zn2SiO4) have been successfully prepared in the temperature range from 1280 to 1340 °C. It is found that willemite ceramics possess excellent millimeter-wave dielectric properties: a dielectric constant ɛr value of 6.6, a quality factor Q × f value of 219,000 GHz and a temperature coefficient of resonant frequency τf value of −61 ppm/°C. By adding TiO2 with large positive τf value (450 ppm/°C), near zero τf value can be achieved in a wide sintering temperature range. With 11 wt% of TiO2, an ɛr value of 9.3, a Q × f value of 113,000 GHz, and a τf value of 1.0 ppm/°C are obtained at 1250 °C. The relationships between microstructure and properties are also studied. Our results show that willemite with appropriate TiO2 is an ideal temperature stable, low ɛr and high Q × f dielectric for millimeter-wave application.  相似文献   

13.
《Ceramics International》2016,42(9):10758-10763
Large size Ba4.2Nd9.2Ti18O54 (BNT) ceramics doped with MnCO3, CuO and CoO were prepared by the conventional solid-state method. Only a single BaNd2Ti4O12 phase was formed in all samples. No second phase was found in the XRD patterns. The bulk density increases slightly because of the dopants. The SEM results showed that the grain size of Mn2+and Cu2+-doped BNT ceramics became larger with the increasing amount of dopants. The permittivity of all samples stays the same. However, the Q×f value of BNT ceramics increases by doping, especially with Mn2+ ions. The conductivity of BNT ceramic doped with Mn2+(0.5 mol‰) under high temperature is lower than that without doping. There are fewer defects in Mn2+-doped BNT ceramics. The XPS results indicated that Ti reduction was suppressed in BNT ceramics doped with 0.5 mol‰ Mn2+. BNT ceramics doped with 0.5 mol‰ Mn2+ ions sintered at 1320 °C for 2 h exhibited good microwave dielectric properties, with εr=88.67, Q×f=7408 GHz and τf = 82.98 ppm/°C.  相似文献   

14.
High dielectric constant and low loss ceramics in the Ba8Ti3Nb4?xSbxO24 (x=0–2) system were prepared by conventional solid-state ceramic route. As x increased from 0 to 1.5, a single phase with hexagonal 8H perovskite structure was formed and the band gap values increased from 3.38 to 3.47 eV. However, the Sb2O3 secondary phase was detected as the x reached 2. The optimum sintering temperature was reduced from 1460 to 1380 °C, the quality factors (Q×f) were effectively enhanced from 22,900 to 38,000 GHz and τf was significantly lowered from 110 ppm/°C to 2 ppm/°C, whereas the dielectric constant decreased from 49 to 35. A good combined microwave dielectric properties with εr=37.5, Q×f=38,000 GHz, τf=15 ppm/°C were obtained for x=1.5.  相似文献   

15.
(Mg1?xZnx)1.8Ti1.1O4 (x = 0.03–1.00) ceramics were prepared via the conventional solid-state method and their dielectric properties were investigated in the microwave frequency region. Formation of solid solutions was confirmed by the X-ray diffraction analysis, the EDX analysis, and the measured lattice parameters. A small amount of Zn substitution for Mg produced a large increase in Q × f due to a high packing fraction as well as a high relative density of the ceramics. By increasing x from 0.00 to 0.06, the Q × f of the specimen could be tremendously improved from 141,000 to a maximum of 210,700 GHz (at 10.52 GHz), demonstrating an unique potential for low-loss microwave applications. The τf values were found to retain in the range from ?54.2 to ?62.3 ppm/°C for all compositions because the resultant change of unit cell volume was small. Also, a remarkable lowering of the sintering temperature down to ~300 °C was observed when Mg was totally substituted by Zn, thereby making it possible for low firing applications.  相似文献   

16.
《Ceramics International》2017,43(2):2246-2251
Ultrahigh-Q Li2(1+x)Mg3ZrO6 microwave dielectric ceramics were successfully prepared by means of atmosphere-controlled sintering through simultaneously adopting double crucibles and sacrificial powder. This technique played an effective role in suppressing the lithium volatilization and further promoting the formation of the liquid phase, as evidenced by the X-ray diffraction, microstructural observation and the density measurement. Both dense and even microstructure, and the suppression of detrimental secondary phases contributed to low-loss microwave dielectric ceramics with Q×f values of 150,000–300,000 GHz. Particularly, desirable microwave dielectric properties of εr=12.8, Q×f=307,319 GHz (@9.88 GHz), and τf=−35 ppm/°C were achieved in the x=0.06 sample as sintered at 1275 °C for 6 h.  相似文献   

17.
Effects of nonstoichiometry on crystal structure and the microstructure of double perovskite Ba(Mg1/2W1/2)O3 ceramics have been investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Raman spectrometry in this paper. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results show that small deviation from stoichiometric composition has little influence on the crystal structure such as B-site 1:1 ordering degree. Evaporation of BaO was confirmed during the sintering of BMW ceramics, which in turn produce more BaWO4 phase. Ba-deficiency or W-excess in BMW could improve the sinterability and Q×f value, while Ba-excess or W-deficiency could suppress the formation of BaWO4 at the expense of increase in sintering temperature and decrease in Q×f value. Mg nonstoichiometry has little effect on the variation of BaWO4 content and Q×f value. Maximum Q×f value of about 140,000 GHz could be obtained for the Ba-deficient or W-excessive samples after sintering at 1500 °C/2 h or 1550 °C/2 h, respectively. All Mg-nonstoichiometric compositions exhibit high Q×f value of about 120,000 GHz after sintering at 1550 °C/2 h. All well-densified samples have dielectric permittivity of about 19–20 and τf value varied within the range of ?21~?28 ppm/°C.  相似文献   

18.
The effect of dopants on BaTi4O9 (BT4) and Ba2Ti9O20 (B2T9) ceramics by the reaction-sintering process was investigated. CuO addition is more effective in lowering the sintering temperature of BT4 and B2T9 ceramics. MnO2 and CuO addition are effective to obtain temperature stable BT4 ceramics. With MnO2 addition, Q × f of BT4 ceramics could be raised. ZrO2 addition is effective to obtain B2T9 ceramics with higher dielectric constant. With CuO addition, τf of B2T9 ceramics shifted toward negative values and 0 ppm/°C could be obtained. Optimum properties in BT4 doped with MnO2 of ɛr = 37.1, Q × f = 51,200 GHz (at 7 GHz) and τf = 0 ppm/°C and in B2T9 doped with ZrO2 of ɛr = 37.9, Q × f = 39,700 GHz (at 7 GHz) and τf = 5.9 ppm/°C were obtained.  相似文献   

19.
Recently forsterite has been reported as an excellent dielectric material for millimeter wave application. However, its temperature variation of the resonant frequency (τf) is relatively large which precludes its immediate use in practical applications. In this paper, we report the effect of substituting Ca and Mn for Mg on the microwave dielectric properties of forsterite. The composition 0.975Mg2SiO4–0.025Mn2SiO4 showed excellent Q × f value of 180,000 GHz with a τf of −71 ppm/°C. The end member Mn2SiO4, showed a Q × f of 50,000GHz, ɛr of 8.52 and τf  =  −90 ppm/°C. In the case of Ca substitution for Mg, τf shifted to high negative value with increasing amount of Ca. However, Q × f did not show much change in its value. It is suggested that the increase of τf towards a more negative value is related to the ionic radii of the substitutes.  相似文献   

20.
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号