首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper demonstrates that seeding nanocrystalline transition alumina powders is a viable option for producing high quality, alumina-based ceramics. By using α-Al2O3 concentrations of ⩾1.25 wt.% α-Al2O3 seed particles (equivalent to 5 ×1014 seeds/cm3 of γ-Al2O3) the sintering temperature is reduced from 1600°C for unseeded γ-Al2O3 to 1300–1400°C in dry pressed powders. The scale of the sintered microstructure is related to Nv−1/3 and thus a 100-nm grain size is obtained. It is apparent that seeding is necessary for producing dense, alumina-based ceramics from nanocrystalline transition alumina powders.  相似文献   

2.
《Ceramics International》2021,47(22):31512-31517
The preparation of α-Al2O3 powders with equiaxed architecture for the fabrication of advanced ceramics is of great importance but still challenging. A new and facile approach for the fabrication of equiaxed α-Al2O3 adopting alumina hydroxide and oxalic acid as the raw materials was reported in this paper for the first time. The current work demonstrated that the adding 0.16 mol/L oxalic acid solution made α-Al2O3 heterogeneously nucleate at a temperature as low as 800 °C, and the amount of nucleation was high enough to remove the vermicular microstructures during the morphology evolution of α-Al2O3, resulting in the formation of equiaxed α-Al2O3 particles with an average size of 205.72 nm at 1300 °C.  相似文献   

3.
Diffusion kinetics, processing, and microstructures of alumina ceramics have been of great scientific and technological interests. Here we reported the sintering kinetics and microstructure evolution in high-purity dispersed ultrafine α-Al2O3 nanoparticles with superior sinterability. An extremely fine grain size of 34 nm with 99.6 % theoretical density and a uniform microstructure can be produced by two-step pressureless sintering. Systematic kinetic analysis further points out to a surprising insensitivity of α-Al2O3 nanocrystalline ceramics to Fe and other impurities, which contrasts with prior reports in the literature. We propose this insensitivity is originated from extensive grain boundaries in nanocrystalline ceramics, which allows segregation of impurities and lowers their concentrations at grain boundaries.  相似文献   

4.
The sintering of α-alumina by a brand new and innovative technique, called pixelated sintering (PS), is here studied. Densification and grain growth by PS of perfectly controlled granular compacts are analysed and compared to results obtained using Spark Plasma Sintering (SPS) and Pressure-Less SPS (PL-SPS). Materials are exposed to the same temperature profiles whatever the sintering technique used in order to assess the potential of PS in terms of microstructure control. It is shown that PS can be used as an alternative technique to SPS for fast sintering with the advantages of a much simpler and cost-effective set-up, as well as a better control of the localised heat input. PS also appears to be a very modular technology in the way it controls the temperature gradients allowing its implementation for multi-step sintering approaches, as well as for the fabrication of large and complex parts.  相似文献   

5.
《Ceramics International》2017,43(6):4841-4845
α-Al2O3 nanoparticles separated by fractionated coagulation still have broad size distributions which limit their wider applications. By adding 20-time mass of large α-Al2O3 (40.5 nm) into α-Al2O3 nanoparticles to be separated in coagulation separation, the average size of separated α-Al2O3 nanoparticles decrease from 6.6 nm without addition of large α-Al2O3 NPs to 4.4 nm, and the size distribution changes from 3–10 nm without addition of large α-Al2O3 NPs to 3–6 nm. With increasing amount of large α-Al2O3 NPs added, separated α-Al2O3 NPs exhibit smaller average sizes and narrower size distribution widths at the same separation concentrations. This approach may be applied to narrow size distribution widths in large-scale size-selective separations of other nanoparticles.  相似文献   

6.
A Pechini process was successfully used to synthesize alpha-alumina (98.95% mass fraction) at relatively low calcination temperature (925 °C). The synthesis of these nanoparticles was carried out using a polymer prepared from citric acid and ethylene glycol by the melt blending method. This polymer worked as a chelating agent for aluminum cations. The final products were produced after a dual-stages thermal treatment. The resulting α-alumina consisted of nanoparticles of 8–16 nm in diameters with a surface area (~8 m2 g?1). The mass fraction of α-alumina was dependent on the concentration of aluminum salt and polymer precursor's solutions, while the surface area of the final product was dependent on the mass fraction of θ-alumina.  相似文献   

7.
A modified Pechini method for the preparation of a high surface area α-alumina is proposed. The synthesis of these nanoparticles was carried out using a polymer as a chelating agent. The polymer was prepared from citric acid and acrylic acid by the melt blending method. The resulting α-alumina (98.16%) after calcination at 900 °C consisted of cylindrical nanoparticles of 100–200 nm in length and <25 nm in diameter with a relatively high surface area (18 m2 g?1).  相似文献   

8.
《Ceramics International》2015,41(7):8742-8747
The polyaluminium chloride (PACl) precursor was used for a simple and scaled-up mechanochemical-molten salt synthesis of α-Al2O3 platelets. PACl, as a low temperature α-Al2O3 precursor, was firstly mechanically activated by high-energy ball milling for 5 min, followed by a next 5 min ball milling in the presence of a NaCl–KCl salt mixture. The starting formation temperature of the α-Al2O3 phase was 600 °C. In the subsequent annealing in the temperature range of 660–1000 °C, the α-Al2O3 phase with a well developed plate-like morphology was obtained. The products were characterized by X-ray powder diffractometry, scanning electron microscopy (SEM), and thermal analysis (DTA, TG) and solution 27Al NMR spectroscopy.  相似文献   

9.
The reversal of the α- to θ-Al2O3 phase transformation and the induced microstructure evolution of boehmite-derived discrete nanosized α-crystallites are examined. Three categories of α-crystallites smaller than 100 nm were examined and found to have similar behavior: (1) pre-existing α-crystallites, (2) α-crystallites formed in situ during the calcination of θ-crystallites of sizes near the critical size, 25 nm, and (3) α-crystallites formed in situ by the thermal treatment of as-received θ-crystallites. The α-crystallite may transform back to the θ-phase above 800 °C. The backwards θ-crystallite may also re-transform to the α-phase again. Because of the density difference between α- and θ-Al2O3, the strain involved in the volume expansion and shrinkage during the phase transition eventually results in the formation of a twinned and/or mosaic structure for the θ- and α-crystallites. A strain release model representing the microstructure evolution of the α- to θ-phase and the θ- to α-Al2O3 phase transformation is proposed.  相似文献   

10.
Due to their special appearance, spherical α-Al2O3 nanoparticles play an important role for obtaining high-performance structural and functional ceramics. However, there are still problems such as easily agglomerates to form worm-like structures at high temperatures and difficult availability of spherical nanoparticles. In this study, spherical α-Al2O3 nanoparticles with high dispersion were prepared by a combination of a microwave hydrothermal method and an addition of nano-Al particles as seeds. First, spherical amorphous alumina precursors were synthesized by the microwave hydrothermal method at 100°C for 30 min using Al2(SO4)3·18H2O, Al(NO3)3·9H2O, and urea, as raw materials, and then spherical α-Al2O3 nanoparticles with a diameter of about 66 nm were acquired after calcined the precursor at 1050°C for 90 min by adding nano-Al seeds, which reduced the calcination temperature by 50°C and holding time by 30 min compared to that without seeds. Kinetic analysis shows that 5 wt.% nano-Al seeds can reduce the activation energy of crystalline transition of γ-Al2O3 to α-Al2O3 from 516.51 to 474.37 kJ/mol. Moreover, the microscopic mechanism of nano-Al particles as seeds was investigated. The characterizations of sintering properties show that spherical α-Al2O3 nanoparticles facilitate the acquisition of uniform microstructure for resulting ceramic and the fracture modes include both intergranular and transgranular fractures.  相似文献   

11.
In this work we present a unique method to synthesize χ-Al2O3 and α-Al2O3 doped with Cr3+ (ruby). The ruby is synthesized by mechanical milling of pseudoboehmite that is doped in-situ with chromium. The doping is carried by adding chromium sulfate hydrate to an aqueous solution rich in aluminum sulfate hydrate. The pH in the solution is controlled to be between 9 and 10 by using ammonia, which induces the pseudoboehmite precipitation. The Cr3+ is added for its remarkable effects on the detectability of ruby emitting luminescent R1 and R2 bands that are traceable in Raman spectroscopy. The formation of ruby is detected at milling times as short as 5 hours and increased with the milling time. Ruby phase is further confirmed by means of true atomic resolution Transmission Electron Microscopy (TEM).  相似文献   

12.
The processes involved in the solution combustion synthesis of α-Al2O3 using urea as an organic fuel were investigated. The data describing the influence of the relative urea content on the characteristic features of the combustion process, the crystalline structure and the morphology of the aluminium oxide are presented herein. Our data demonstrate that the combustion of stable aluminium nitrate and urea complexes leads to the formation of α-alumina at temperatures of approximately 600–800 °C. Our results, obtained using differential thermal analysis and IR spectroscopy methods, reveal that the low-temperature formation of α-alumina is associated with the thermal decomposition of an α-AlO(OH) intermediate, which was crystallised in the crystal structure of the diaspore.  相似文献   

13.
γ-Al2O3 meso-porous membranes supported by tubular α-Al2O3 substrates were prepared by using the sol-gel method and their nanostructural characterizations were performed for the first time with high-resolution transmission electron microscopy (HRTEM) before and after hydrothermal treatment at 500 °C. The HRTEM images and pore size distribution (PSD) analyses revealed that the morphologies as well as the characteristics of the powder and membrane samples prepared from the same boehmite are not identical. γ-Al2O3 and La2O3-Ga2O3 doped-γ-Al2O3 (LGA) membranes supported by α-Al2O3 were also fabricated and characterized under thermal and hydrothermal conditions for the purpose of comparisons. Finally, two type α-Al2O3/γ-Al2O3/SiO2 (AA-SiO2) and α-Al2O3/La2O3-Ga2O3-γ-Al2O3/SiO2 (ALGA-SiO2) membranes have been synthesized and the gas permeance of the membrane were measured in the temperature range 100–500 °C.  相似文献   

14.
Size-controlled Pd nanoparticles (PdNPs) were synthesized in aqueous solution, using sodium car-boxymethyl cellulose as the stabilizer. Size-controlled PdNPs were supported onα-Al2O3 by the incipient wetness impregnation method. The PdNPs onα-Al2O3 support were in a narrow particle size distribution in the range of 1-6 nm. A series of PdNPs/α-Al2O3 catalysts were used for the selective hydrogenation of acetylene in ethylene-rich stream. The results show that PdNPs/α-Al2O3 catalyst with 0.03%(by mass) Pd loading is a very effective and sta-ble catalyst. With promoter Ag added, ethylene selectivity is increased from 41.0%to 63.8%at 100 &#176;C. Comparing with conventional Pd-Ag/α-Al2O3 catalyst, PdNPs-Ag/α-Al2O3 catalyst has better catalytic performance in acety-lene hydrogenation and shows good prospects for industrial application.  相似文献   

15.
《应用陶瓷进展》2013,112(3):133-136
Abstract

The microstructure, phase constitution, and physical properties of mullite bodies prepared from α-Al2O3- kaolin mixtures with added B2O3 were investigated. Densification was found to be enhanced with small additions of B2O3. The results indicate that 0.5 wt-% B2O3 increases the content and growth rate of the mullite. It was found to be the optimum addition with respect to densification and resulting properties.  相似文献   

16.
17.
We investigated the sintering behavior of Cr2O3–Al2O3 ceramic materials. In our observation of the isothermal shrinkage behavior of Cr2O3–Al2O3 ceramic, the activation energy of sintering reaction was measured to be 102 kJ/mol, that is, the near value of the activation energy of diffusion of Al ions in Al2O3 single crystal. Therefore the diffusion of cations is believed to control the sintering behavior of this material. With the addition of TiO2, (the compound chosen to accelerate the diffusion of cations) to Cr2O3–Al2O3, the sintering behavior was accelerated.  相似文献   

18.
Until recently, the processing of high surface area alumina ceramics has been restricted to transitional phases such as , , and . In this study, a nanocrystalline -Al2 3 powder (100 m2/g) was processed into mesoporous -Al2 3 ceramics with surface areas in the range 20 to 80 m2/g. Hence, the opportunity exists to study the effect of thermal treatment on the pore structure of a high surface area -Al2 3 ceramic in the temperature range 600°C to 1000°C. The reduction in surface area was characterized as pure coarsening by surface diffusion. Examination of the pore structure showed both intraparticle pores and interparticle pores in the temperature range 600°C to 800°C and only interparticle pores above 800°C. The powder particles were dense and polycrystalline. However, much of their internal structure is lost in heat treatments above 1000°C.  相似文献   

19.
An explosive method for producing ultrafine -Al2O3 is developed and optimal synthesis parameters are determined. Particles of ultrafine -Al2O3 have a spherical shape and are separated from one another. The size distribution is log-normal (number-averaged size 70 nm and variance 1.9). Special features of phase transitions in ultrafine aluminum oxide under shock-wave action are studied. Results of x-ray phase analysis suggest stabilization of the new high-pressure phase -Al2O3 with a face-centered cubic lattice with a parameter a = 8.53 Key words: metastability, corundum, shock-wave synthesis, surface, modification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号