首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(16):13371-13376
Lead free Bi0.5(Na0.8K0.2)0.5TiO3 thin films doped with BiFeO3 (abbreviated as BNKT-xBFO) (x = 0, 0.02, 0.04, 0.08, 0.10) were deposited on Pt(111)/Ti/SiO2/Si substrates by sol-gel/spin coating technique and the effects of BiFeO3 content on the crystal structure and electrical properties were investigated in detail. The results showed that all the BNKT-xBFO thin films exhibited a single perovskite phase structure and high-dense surface. Reduced leakage current density, enhanced dielectric and ferroelectric properties were achieved at the optimal composition of BNKT-0.10BFO thin films, with a leakage current density, dielectric constant, dielectric loss and maximum polarization of < 2 × 10−4 A/cm3, ~ 978, ~ 0.028 and ~ 74.13 μC/cm2 at room temperature, respectively. Moreover, the BNKT-0.10BFO thin films possessed superior energy storage properties due to their slim P-E loops and large maximum polarization, with an energy storage density of 22.12 J/cm3 and an energy conversion efficiency of 60.85% under a relatively low electric field of 1200 kV/cm. Furthermore, the first half period of the BNKT-0.10BFO thin film capacitor was about 0.15 μs, during which most charges and energy were released. The large recoverable energy density and the fast discharge process indicated the potential application of the BNKT-0.10BFO thin films in electrostatic capacitors and embedded devices.  相似文献   

2.
(Na0.5Bi0.5)0.94Ba0.06TiO3 thin films were deposited on Pt/Ti/SiO2/Si (1 1 1) and LaNiO3/Pt/Ti/SiO2/Si (1 1 1) substrates by a sol–gel process. The phase structure and ferroelectric properties were investigated. The X-ray diffraction pattern indicated that the (Na0.5Bi0.5)0.94Ba0.06TiO3 thin film deposited on Pt/Ti/SiO2/Si (1 1 1) substrates is polycrystalline structure without any preferred orientation. But the thin film deposited on LaNiO3/Pt/Ti/SiO2/Si substrates shows highly (1 0 0) orientation (f  81%). The leakage current density for the two thin films is about 6 × 10?3 A/cm2 at 250 kV/cm, and thin film deposited on LaNiO3/Pt/Ti/SiO2/Si substrates possessed a much lower leakage current under high electric field. The hysteresis loops at an applied electric field of 300 kV/cm and 10 kHz were acquired for the thin films. The thin films deposited on LaNiO3/Pt/Ti/SiO2/Si substrates showed improved ferroelectricity.  相似文献   

3.
《Ceramics International》2017,43(16):13063-13068
PbTiO3 (PTO), Pb(Mn0.1Ti0.9)O3 (PMTO), Pb(Sr0.1Ti0.9)O3 (PSTO), and Pb(Zr0.1Ti0.9)O3 (PZTO) were prepared on an indium tin oxide (ITO)/glass substrate by a sol-gel method. PTO, PMTO, PSTO, and PZTO films exhibited energy band gaps of 3.55 eV, 3.63 eV, 3.59 eV, and 3.66 eV, respectively. All these films generated high photocurrents due to high shift currents, because carrier migration channels were successfully introduced by a lattice mismatch between the films and ITO substrates. The PMTO thin film exhibited the best ferroelectric and photovoltaic properties, with a photovoltage of 0.74 V, a photocurrent density of 70 μA/cm2, and a fill factor of 43.34%, which confirms that shift current and ferroelectric polarization are two main factors that affect the ferroelectric photovoltaic properties. The PSTO, PZTO, and PTO thin films displayed space-charge-limited current (SCLC) when the electric field strength was below 10 kV/cm, and these three films broke down when the electric field strength was above 10 kV/cm. Analysis of the shift current mechanism confirmed that the breakdown of the PZTO and PSTO thin films resulted from Pool Frenkel emission current. The PMTO thin film displayed SCLC in the test range, which indicates that doping with Mn could inhibit defect formation in ferroelectric thin films.  相似文献   

4.
PbZr0.53Ti0.47O3 (PZT) thin films with thickness of 0.9 μm were prepared on La0.5Sr0.5CoO3 (LSCO) coated Si substrates. Both PZT and LSCO were prepared by the sol–gel method. The concentration of LSCO sol was varied from 0.3 to 0.1 mol/L, which could modify the preferential orientation of PZT thin films and consequently affect the dielectric and ferroelectric properties. The LSCO electrode layers derived from lower sol concentration of 0.1 mol/L have much more densified structure, which facilitates the formation of (1 0 0) textured PZT films with smooth and compact columnar grains. PZT thin films prepared on the optimized LSCO films exhibit the enhanced dielectric constant and remnant polarization of 980 and 20 μC/cm2, respectively.  相似文献   

5.
Low loss ferroelectric materials have been extensively investigated for the high frequency device applications. Especially, weak frequency dispersion materials with high dielectric permittivity and low loss tangent have enormous potential for electronic components including filters, and embedded capacitors. Ag(Ta0.5Nb0.5)O3 thick films have been prepared by low temperature sintering aid Li2CO3 (0, 1, 3 and 5 wt%). Ag(Ta0.5Nb0.5)O3 thick films were characterized by X-ray diffraction analysis and scanning electron microscopy. The dielectric and ferroelectric properties were also investigated. We observed very weak frequency dispersion of dielectric permittivity at the microwave frequency range.  相似文献   

6.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) films with different thicknesses were prepared by polyvinylpyrrolidone (PVP)-modified chemical solution deposition (CSD) method. The KNN films with thickness up to 4.9 μm were obtained by repeating deposition-heating process. All KNN thick films exhibit single perovskite phase and stronger (1 1 0) peak when annealed at 650 °C. The variation of dielectric constant with thickness indicates that there exists a critical thickness for the dielectric constant in the KNN films which should lie in 1.3–2.5 μm. The similar trend is observed for the ferroelectric and piezoelectric properties of KNN films. Both the remnant polarization Pr and the piezoelectric coefficient d33 of KNN thick films increase with the film thickness and become saturated after the critical thickness.  相似文献   

7.
Bi0.5(Na0.82K0.18)0.5TiO3 lead free thick films have been produced using a combination of screen printing and subsequent infiltration of corresponding composite sol. Their structure, dielectric, ferroelectric and piezoelectric properties were investigated with variation in the number of composite sol infiltrations and the nanopowder loading in composite sol. Dielectric constant, remanent polarization, and piezoelectric coefficient have been shown to increase with increasing numbers of composite sol infiltration. Dielectric and ferroelectric properties of the thick films are found to be strongly dependent on the powder concentration of composite sols. The resulting 40 μm thick films infiltrated with 1.5 g/ml composite sols have maximum relative permittivity of 569 (at 10 kHz), remanent polarization of 21.3 μC/cm2, coercive field of 80 kV/cm, and longitudinal effective piezoelectric coefficient d33eff of 109 pm/V. The performance of these lead free piezoelectric thick films is comparable to the corresponding bulk ceramics.  相似文献   

8.
《Ceramics International》2016,42(12):13960-13968
We investigated the temperature- and frequency-dependent polarization and strain of two bismuth-based perovskite materials, a matrix material and a seed material, with which we formed a composite whose properties we likewise investigated. The chosen matrix material is 0.74Bi0.5Na0.5TiO3–0.26SrTiO3 (BNT-ST) which has a transition point of ~65 °C, from the relaxor to the ferroelectric phase (TR-F). The seed material was Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT), which possesses a TR-F of 120 °C. Different polarization and strain behaviors were observed in the BNT-ST/BNKT composite at different test temperatures. At T=25 °C (<TR-F of the relaxor BNT-ST), the composite exhibited a hysteretic polarization loop and parabolic strain curves which involve an ergodic relaxor-to-normal ferroelectric phase transition with application of an external electric field and the reverse ferroelectric-to relaxor phase transition with removal of the field. When T=80 and 100 °C (>TR-F °f the relaxor BNT-ST and <TR-F of the ferroelectric BNKT), the BNT-ST/BNKT has a slim polarization loop and strain magnitudes that are slightly increased from those of pure BNT-ST. When T=120 °C (~TR-F of the ferroelectric BNKT), the composite has a very slim polarization loop and strain behavior with values that are almost same as those of pure BNT-ST. In addition, the P-S relation for the BNT-ST/BNKT is identical to that of BNT-ST as the operating frequency increases up to 100 Hz. This may be because the polarization of BNT-ST is lower than that of BNKT. The electric field-induced polarization and strain of the BNT-ST/BNKT composite with respect to the temperature and frequency are related to the thermal stability of the ferroelectric seed and the degree of the phase transition in the relaxor matrix.  相似文献   

9.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

10.
《Ceramics International》2016,42(3):4313-4322
(Bi0.5Na0.5)0.94Ba0.06(Ti1−xTax)O3 (x=0.00–0.04) lead-free polycrystalline ceramics were synthesized using the solid state reaction route, and their crystal structures and electrical properties were systematically studied. With the introduction of Ta substitution, the relaxor antiferroelectric phase with tetragonal P4bm symmetry is stabilized. The representative double polarization hysteresis loops and sprout shaped strain curves for antiferroelectric ceramics are observed at higher Ta contents with x=0.01–0.02 at room temperature. x=0.01 shows the largest strain of 3.81‰ under 60 kV/cm, indicating a good candidate for actuator applications. The polarization and strain hysteresis loops are also evaluated to verify the temperature-induced normal ferroelectric phase to relaxor antiferroelectric phase transition at temperature up to 120 °C. The energy storage density and efficiency at various temperatures are calculated and analyzed in the compositions of x=0.00–0.02. The results indicate that the energy storage density becomes more temperature independent with the increase of Ta concentration, which are promising for applications in high-temperature capacitors.  相似文献   

11.
Bi0.85La0.15FeO3 (BLFO015) thin films were deposited by the polymeric precursor solution on La0.5Sr0.5CoO3 substrates. For comparison, the films were also deposited on Pt bottom electrode. X-ray diffraction data confirmed the substitutions of La into the Bi site with the elimination of all secondary phases under a substitution ratio x = 15% at a temperature of 500 °C for 2 h. A substantial increase in the remnant polarization (Pr) with La0.5Sr0.5CoO3 bottom electrode (Pr  34 μC/cm2) after a drive voltage of 9 V was observed when compared with the same film deposited on Pt substrate. The leakage current behavior at room temperature decreased from 10?8 (Pt) to 10?10 A/cm2 on (La0.5Sr0.5CoO3) electrode under a voltage of 5 V. The fatigue resistance of the Au/BLFO015/LSCO/Pt/TiO2/SiO2/Si (1 0 0) capacitors with a thickness of 280 nm exhibited no degradation after 1 × 108 switching cycles at a frequency of 1 MHz.  相似文献   

12.
《Ceramics International》2007,33(6):1041-1046
Lead-free (1  x)BaTiO3xBi0.5Na0.5TiO3 (x = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3) ferroelectric ceramics were fabricated by the conventional ceramic technique. Sintering was made at 1200 °C for 2–4 h in air atmosphere. The crystal structure was investigated by X-ray diffraction. The dielectric and ferroelectric properties were also studied. Room temperature permittivity was found to decrease as Bi0.5Na0.5TiO3 (BNT) content increases. Only the sample with 0.3 mol BNT was found to have relaxor behaviour. The Tc shifted slightly only for BNT addition lower than 0.1 mol. The highest Tc (about 150 °C) was obtained for 0.2 mol BNT addition. The remanent polarization, Pr, decreases whereas the coercive field, Ec, increases monotonously as the BNT content increases.  相似文献   

13.
《Ceramics International》2016,42(8):9419-9425
Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1−x(Fe0.5Sb0.5)xO3 (BNBT6.5–xFS, x=0.005, 0.010, 0.015, 0.020) were prepared by a conventional solid sintering technique. The effects of B-site doping of (Fe, Sb) on the phase structure, microstructure, dielectric, ferroelectric, and piezoelectric properties of BNBT6.5 ceramics were systematically investigated. Results showed that (Fe, Sb) can completely diffuse in the BNBT6.5 lattice in the all studied components. The addition of (Fe, Sb) destroyed the ferroelectric long-range order, and thus promoted the electric field induced strain response. The maximum electric field-induced strain (Smax=0.37%) with normalized strain (d33*=Smax/Emax=454 pm/V) at an applied electric field of 80 kV/cm was obtained at x=0.015. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C suggested that the origin of the large strain is due to a reversible field-induced ergodic relaxor to ferroelectric phase transformation.  相似文献   

14.
《Ceramics International》2016,42(14):15338-15342
2 at% Manganese-doped Na0.5Bi0.5TiO3 (NBTMn) thin films with single-layer thicknesses ranging from 15 to 45 nm/l were deposited on the indium tin oxide/glass substrates by a metal organic decomposition process and spin coating technique. The influence of single-layer thickness on the crystal structure, surface morphology, insulating ability, ferroelectric and dielectric properties was mainly investigated. Compared with the other films, NBTMn film with a single-layer thickness of 30 nm/l exhibits the (110)-preferred orientation and dense structure. Also, it shows the enhanced ferroelectricity with a large remanent polarization (Pr) of 38 μC/cm2 due to the preferred orientation and low leakage current density. Meanwhile, a high dielectric tunability of 39% for NBTMn with 30 nm/l can be observed by varying the measuring applied voltage and frequency. These results indicate that the suitable layer thickness is beneficial to improve the electrical performances of NBTMn thin film.  相似文献   

15.
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition.  相似文献   

16.
《Ceramics International》2016,42(10):12210-12214
The effects of annealing temperature on the structure, morphology, ferroelectric and dielectric properties of Na0.5Bi0.5Ti0.99W0.01O3+δ (NBTW) thin films are reported in detail. The films are deposited on indium tin oxide/glass substrates by a sol-gel method and the annealing temperature adopted is in the range of 560–620 °C. All the films can be well crystallized into phase-pure perovskite structures and show smooth surfaces without any cracks. Particularly, the NBTW thin film annealed at 600 °C exhibits a relatively large remanent polarization (Pr) of 20 μC/cm2 measured at 750 kV/cm. Additionally, it shows a high dielectric constant of 608 and a low dielectric loss of 0.094 as well as a large dielectric tunability of 62%, making NBTW thin film ideal in the room-temperature tunable device applications.  相似文献   

17.
《Ceramics International》2016,42(8):9577-9582
In the current study, a series of lanthanide ions, Tm, Yb and Lu, were used for doping at the Bi-site of the Aurivillius phase Na0.5Bi4.5Ti4O15 (NaBTi) to investigate the structural, electrical and ferroelectric properties of the thin films. In this regard, Na0.5Bi4.5Ti4O15 and the rare earth metal ion-doped Na0.5Bi4.0RE0.5i4O15 (RE=Tm, Yb and Lu, denoted by NaBTmTi, NaBYbTi, and NaBLuTi, respectively) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Formations of the Aurivillius phase orthorhombic structures for all the thin films were confirmed by X-ray diffraction and Raman spectroscopic studies. Based on the experimental results, the rare earth metal ion-doped Na0.5Bi4.0RE0.5Ti4O15 thin films exhibited a low leakage current and the improved ferroelectric properties. Among the thin films, the NaBLuTi thin film exhibited a low leakage current density of 6.96×10−7 A/cm2 at an applied electric field of 100 kV/cm and a large remnant polarization (2Pr) of 26.7 μC/cm2 at an applied electric field of 475 kV/cm.  相似文献   

18.
(K,Na)NbO3 ferroelectric films were grown on LaNiO3 coated silicon substrates by RF magnetron sputtering. The conductive LaNiO3 films acted as seed layers and induced the highly (001) oriented perovskite (K,Na)NbO3 films. Such films exhibit saturated hysteresis loops and have a remnant polarization (2Pr) of 23 μC/cm2, and coercive field (2Ec) of 139 kV/cm. The films showed a fatigue-free behavior up to 109 switching cycles. A high tunability of 65.7% (@300 kV/cm) was obtained in the films. The leakage current density of the films is about 6.0×10?8 A/cm2 at an electric field of 50 kV/cm.  相似文献   

19.
Low-lead-content (1-x)(Bi0.5Na0.5)TiO3-xPbTiO3 (x = 0, 0.05, 0.10, 0.15, 0.25) (hereafter abbreviated as BNT-xPT) thin films were prepared by a sol-gel method, and their crystal structure, dielectric properties, recoverable energy-storage density and piezoelectric response were investigated as a function of PT concentration. Combining the XRD patterns and Raman spectroscopy indicate the phase structures go through rhombohedral (R) – rhombohedral + tetragonal (R + T) – tetragonal (T) evolution with increasing of PT content. A high recoverable energy storage density of 13.02 ± 0.39 J/cm3 was achieved in the BNT-0.10PT thin films due to the high field endurance and significantly enhanced polarizability. Moreover, a superior piezoelectric response (d33* = 120 ± 5 pm/V) was also obtained in the 10% PT-modified BNT films, which can be attributed to easy polarization rotation due to low polarization anisotropy on the R-T phase boundary. These properties indicate that BNT-0.10PT films might be promising multifunctional materials for piezoelectric micro-actuator and energy storage embedded capacitor applications.  相似文献   

20.
Perovskite Na0.5(Bi1?xNdx)0.5TiO3 (x = 0, 0.01, 0.03, 0.05; xNd: NBT) ferroelectric films were synthesized on indium tin oxide (ITO)/glass substrates via chemical solution deposition. Structural characterization shows the similar phase-pure perovskite structures in all the films and gradually decreased grain sizes with Nd3+ doping amount increasing. For all the films, the leakage behaviors are dominant by the Ohmic conduction in low electric field region and interface-limited Fowler-Nordheim tunneling mechanism in high electric field region. Additionally, the space-charge-limited conduction is involved in 0.03Nd: NBT sample. Compared with the sample of x = 0, the resistivity can be improved through Nd3+-substitution in NBT. Enhanced ferroelectricity can be obtained from the dynamic polarization-electric field test, and the reversible domains switching in film can be confirmed by static dielectric constant-electric field measurement. Especially, the 0.03Nd: NBT possesses optimal electrical performances with a large remanent polarization (Pr = 26.7 μC/cm2) and a high dielectric tunability (19.6% at 100 kHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号