首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) are often reported as additives improving mechanical and functional properties of ceramic composites. However, despite tremendous efforts in the field in the past 20 years, the results are still inconclusive. This paper studies room temperature properties of the composites with polycrystalline alumina matrix reinforced with 0.5–2 vol.% MWCNTs (composites AC) and zirconia toughened alumina with 5 vol.% of yttria partially stabilised zirconia (3Y-PSZ) containing 0.5–2 vol.% of MWCNTs (composites AZC). Dense composites were prepared through wet mixing of the respective powders with functionalised MWCNTs, followed by freeze granulation, and hot-pressing of granulated powders. Room temperature bending strength, Young's modulus, indentation fracture toughness, thermal and electrical conductivity of the composites were studied, and related to their composition and microstructure. Slight increase of Young's modulus, indentation fracture toughness, bending strength, and thermal conductivity was observed at the MWCNTs contents ≤1 vol.%. At higher MWCNTs contents the properties were impaired by agglomeration of the MWCNTs. The DC electrical conductivity increased with increasing volume fraction of the MWCNTs.  相似文献   

2.
TiB2-SiC and TiB2-SiC-graphene nanoplatelets (GNPs) composites were prepared using field-assisted sintering technology at 2100 °C in argon atmosphere, and the influence of the SiC and different GNPs addition on microstructure development, mechanical and tribological properties has been investigated. Instrumented hardness, bending strength, chevron-notched fracture toughness and ball-on-flat tribological tests were used for the testing and characterization of the composites. The addition of SiC significantly improved the bending strength and elastic modulus with values of 601 MPa and 474 GPa, respectively, but decreased the fracture toughness with a value of 4.8 MPa.m1/2. The addition of GNPs has a positive effect on fracture toughness and flexural strength but a negative one on the hardness. The increasing amount of both GNPs has a positive influence on wear characteristics of the composites thanks to the described wear mechanisms.  相似文献   

3.
ZrO2增韧Al2O3—TiC系陶瓷复合材料的力学性能及其耐磨性能   总被引:7,自引:0,他引:7  
本文通过对ZrO2增韧Al2O3-TiC系复相陶瓷材料的制备工艺以及ZrO2含量的变化对材料断裂韧性、抗弯强度以及硬度的影响研究,采用X射线衍射法分析断口相变量随组成变化对多元系相陶瓷断裂韧性、抗弯强度的影响,同时分析在不同冲击工况下其耐冲蚀磨损特性与力学性能之间的关系。  相似文献   

4.
《Ceramics International》2019,45(14):17344-17353
The processing of 3D carbon fiber reinforced SiCN ceramic matrix composites prepared by polymer impregnation and pyrolysis (PIP) route was improved, and factors that determined the mechanical performance of the resulting composites were discussed. 3D Cf/SiCN composites with a relative density of ∼81% and uniform microstructure were obtained after 6 PIP cycles. The optimum bending strength, Young's modulus and fracture toughness of the composites were 75.2 MPa, 66.3 GPa and 1.65 MPa m1/2, respectively. The residual strength retention rate of the as-pyrolyzed composites was 93.3% after thermal shock test at ΔT = 780 °C. It further degraded to 14.6% when the thermal shock temperature difference reached to 1180 °C. The bending strength of the composites was 35.6 MPa after annealing at 1000 °C in static air. The deterioration of the bending strength should be attributed to the strength degradation of carbon fibers and decomposition of interfacial structure.  相似文献   

5.
ZrB2含量对LaB6-ZrB2复合材料性能的影响   总被引:3,自引:0,他引:3  
采用碳热还原法合成了不同ZrB2含量的LaB6-ZrB2复合粉末。通过热压烧结法制备了相应的复合材料,其性能测试结果表明:随着ZrB2含量的增加,LaB6-ZrB2复合材料的硬度和弯曲强度均随之增大.而断裂韧性则先增后减,在ZrB2质量分数为21%时,其断裂韧性达最大值。利用金相显微镜和扫描电镜观察多晶试样的微观组织及断口形貌,初步分析了复合材料的增韧机制。  相似文献   

6.
Inspired by the unique structures of plant cells, tungsten carbide (WC, cytoderm) coated mesocarbon microbeads (MCMB, cytoplasm) powders were prepared by molten salt synthesis, which were then densified by spark-plasma sintering to obtain the biomimetic cellular-structured MCMB@WC composites. The in-situ formed WC cytoderm significantly contributed to the densification of the composites. Additionally, the formation of periodically arranged hard-soft architecture and perfect MCMB/WC interface bonding enhanced the mechanical properties significantly. The composite with WC concentration of 53 vol% exhibited the maximal bending strength and fracture toughness of 446 MPa and 4.48 MPa m1/2, respectively. The developed biomimetic ceramic/graphite composites with excellent mechanical properties are expected to be applied in aerospace and other industries.  相似文献   

7.
本研究采用SoL-GeL法和自动引燃法制备[(2Y-ZrO)-AlO]超微粉,并进行了微观结构分析。为比对223两种超微粉性能的差异,采用注浆成型法制备样品,并分别测定抗折强度,断裂韧性和烧结温度。结果表明:自动引燃制备的ZrO-AlO掺稀土纳米微粉,工艺简单、细小均匀,由其烧造的样品较SoL-GeL法样品抗弯强度高,223断裂韧性好,烧结温度低。  相似文献   

8.
短切碳纤维含量对Csf/SiC复合材料力学性能的影响   总被引:1,自引:0,他引:1  
以Si作为主要烧结助剂,采用热压烧结法制备了短切碳纤维-碳化硅(short carbon fiber reinforced SiC composite,Csf/SiC)复合材料.采用X射线衍射仪、扫描电镜、硬度仪以及力学性能试验机等,研究了Csf含量对所制备材料的结构、组成、形貌及复合材料的弯曲强度、Vickers硬度和断裂韧性的影响.结果表明:采用热压法能制备出致密且Csf分布均匀的Csf/SiC复合材料.Csf/SiC复合材料的弯曲强度随Csf含量增加先增大后减小,含15%(体积分数,下同)Csf的Csf/SiC样品强度最高,达到466MPa,并且Csf含量小于30%的Csf/SiC样品强度高于无纤维SiC材料.材料的Vickers硬度随Csf含量增加而降低.Csf/SiC样品的断裂韧性随Csf含量增加而逐渐增大,Csf含量为53%时,达到最大为5.5MPa·m1/2,与无纤维SiC样品相比,增加近2倍.  相似文献   

9.
In this work, resin-derived carbon coating was prepared on carbon fibers by polymer impregnation pyrolysis method, then silicoboron carbonitride powder was prepared by mechanical alloying, and finally carbon fiber-reinforced silicoboron carbonitride composites were prepared by hot-pressing process. The effects of sintering densification and fiber coating on microstructure, mechanical properties, thermal shock resistance, and failure mechanisms of the composites were studied. Fiber bridging hinders the sintering densification, causing more defects in fiber-dense area and lower strength. However, higher sintering temperature (1800–2000°C) can improve mechanical properties significantly, including bending strength, vickers hardness, and elastic module, because further sintering densification enhances matrix strength and fiber/matrix bonding strength, while the change of fracture toughness is not obvious (2.24–2.38 MPa·m1/2) due to counteraction of higher debonding resistance and less pull-out length. However, fiber coating improves fracture toughness greatly via protecting carbon fibers from chemical corrosion and damage of thermal stress and external stress. Due to lower coefficient of thermal expansion, lower fiber loading ratio, less stress concentration at the fiber/matrix interface, and better defect healing effect, lower sintering temperature favors thermal shock resistance of composites, and thermal shock recession mechanisms are the damage of interface.  相似文献   

10.
In this work, multiwalled carbon nanotubes (MWCNTs), as reinforcing agent, were blended with linear low‐density polyethylene (LLDPE), then molded by hot compression molding to prepare LLDPE/MWCNTs composites. Tensile tests indicate that the strength, Young's modulus, and toughness are all improved for LLDPE/MWCNTs composites containing 1 and 3 wt % MWCNTs. Compared with LLDPE, the Young's modulus of LLDPE/MWCNTs composites rises from 144.8 to 270.8 MPa at 1 wt % MWCNTs content. At the same time, increases of 18.5% in tensile strength and 16.6% in yield strength are achieved. Additionally, its toughness is enhanced by 26.7% than that of LLDPE. Microstructure characterizations, including differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy were performed to investigate the variations of microstructure and further to establish the relationship between microstructure and mechanical properties. Homogeneous dispersion of MWCNTs, network formation, and development of an oriented nanohybrid shish‐kebab structure contribute to the enhanced strength and toughness. The increased crystallinity is beneficial to the reinforcement and increased modulus. Additionally, the thermal stability of the LLDPE/MWCNTs composites is enhanced as well. This work suggests a promising routine to optimize polymer/MWCNTs composites by tailoring the structural development. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45525.  相似文献   

11.
Electroconductive Al2O3–NbN ceramic composites were prepared by hot pressing. Dense sintered bodies of ball-milled Al2O3–NbN composite powders were obtained at 1550°C and 30 MPa for 1 h under a nitrogen atmosphere. The bending strength and fracture toughness of the composites were enhanced by incorporating niobium nitride (NbN) particles into the Al2O3 matrix. The electrical resistivity of the composites decreased with increasing amount of NbN phase. For a 25 vol% NbN–Al2O3 composite, the values of bending strength, fracture toughness, Vickers hardness, and electrical resistivity were 444.2 MPa, 4.59 MPa·m1/2, 16.62 GPa, and 1.72 × 10−2Ω·cm, respectively, making the composite suitable for electrical discharge machining.  相似文献   

12.
The use of multi-wall carbon nanotubes (MWCNTs) or single-wall carbon nanotubes (SWCNTs) as filler in ceramic matrices could create composites with exceptional mechanical properties. We have prepared dense monolithic alumina (Al2O3) and zirconia-toughened alumina (ZTA) composites with additions of 0.01 wt% of MWCNTs or 0.01 wt% of SWCNTs by conventional sintering and have demonstrated that the mechanical properties depend on (a) the distribution of CNTs in the matrix and (b) the interaction between the ceramic phases and CNTs. The fracture toughness of Al2O3 ceramics reinforced with SWCNTs was significantly better than those reinforced with MWCNTs. However, fracture toughness in MWCNT-reinforced ZTA increased 41% over ZTA free of the toughening agent and 44% over ZTA reinforced with SWCNTs. A well dispersed and small amount of MWCNTs was enough to produce an increase of fracture toughness in ZTA composites.  相似文献   

13.
The boron nitride nanosheets (BNNSs)/aluminum nitride (AlN) composites were prepared by hot press sintering at 1600°C. The microstructure, mechanical properties, and thermal conductivity of the samples were measured, and the effect of adding BNNSs to AlN ceramics on the properties was studied. It is found that the addition of BNNSs can effectively improve the mechanical properties of AlN. When the additional amount is 1 wt%, the bending strength of the sample reaches the maximum value of 456.6 MPa, which is 23.1% higher than that of the AlN sample without BNNSs. The fracture toughness of the sample is 4.47 MPa m1/2, a 68.7% improvement over the sample without BNNSs. The composites obtained in the experiment have brilliant mechanical properties.  相似文献   

14.
In this study, carbon fiber–epoxy composites are interleaved with electrospun polyamide‐6,6 (PA 66) nanofibers to improve their Mode‐I fracture toughness. These nanofibers are directly deposited onto carbon fabrics before composite manufacturing via vacuum infusion. Three‐point bending, tensile, compression, interlaminar shear strength, Charpy impact, and double cantilever beam tests are performed on the reference and PA 66 interleaved specimens to evaluate the effects of PA 66 nanofibers on the mechanical properties of composites. To investigate the effect of nanofiber areal weight density (AWD), nanointerlayers with various AWD are prepared by changing the electrospinning duration. It is found that the electrospun PA 66 nanofibers are very effective in improving Mode‐I toughness and impact resistance, compressive strength, flexural modulus, and strength of the composites. However, these nanofibers cause a decrease in the tensile strength of the composites. The glass‐transition temperature of the composites is not affected by the addition of PA 66 nanofibers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45244.  相似文献   

15.
Fe28Al bound TiC matrix composites with TiC content of 75–90% in volume (vol.%) were successfully fabricated by spontaneous melt infiltration. Amounts of Fe28Al in excess and below the pore volume of the TiC preform were used for optimization of fabrication techniques. Young's modulus, hardness, flexural strength and fracture toughness of the composites were measured. Four-point bending strength of Fe28Al/90–75 vol.% TiC ranges to 990–1260 MPa. The high strength is attributed to the good infiltration ability of molten Fe28Al in the porous TiC preform and to processing refinements. TiC preform pre-sintering and indirect infiltration all lead to fully dense and defect-free composites. The relationship between Vickers hardness and indentation fracture toughness and the dependence of mechanical properties on microstructure of the composites were also studied. Results of SEM and XRD analysis show TiC and Fe28Al as the only crystalline phases of the composite. Fe28Al ligaments have ductile behaviour and greatly toughen the composites. Crack front deviation during fracture also increased the fracture resistance of the composites.  相似文献   

16.
用化学共沉淀法制备了3mol%Y_2O_3-ZrO_2超细粉末。利用热分析,x射线,透射电镜,颗粒粒度分析仪分析了粉料的相组成;颗粒形貌、大小;粉料的团聚状态;化学组成的均一性以及其烧结性能,并结合烧结试样的显微结构和力学性能对粉末的性能做出了评价。实验表明,所制备的粉料组成较为均匀;粒度分布窄;团聚体尺寸小,烧结活性高;颗粒粒度约为200(?)。粉料的相组成主要为四方相和约26%的单斜相。3Y-TZP陶瓷材料三点弯曲强度达1479.14MPa,断裂韧性为13.2MPa·m~(1/2),超塑性压缩变形达190%。  相似文献   

17.
BaOAl2O32SiO2 (BAS) glass–ceramic powders were prepared by sol–gel technique. SiC platelet reinforced BAS glass–ceramic matrix composites with high density and uniform microstructure were fabricated by hot-pressing. The effect of additional crystalline seeds on hexagonal to monoclinic phase transformation of Barium aluminosilicate was studied. The effects of SiC platelet content on the microstructure and mechanical properties of the composites were also investigated. The results showed that the flexural strength and fracture toughness of the BAS glass–ceramic matrix composites can be effectively improved by the addition of silicon carbide platelets. The main toughening mechanism was crack deflection, platelets' pull-out and bridging. The increased value of flexural strength is contributed to the load transition from the matrix to SiC platelets.  相似文献   

18.
Carbon fiber-reinforced epoxy (CF/EP) composites have been widely used in aerospace industry, while poor electrical conductivity and interlaminar shear fracture toughness could reduce their safety as structural components in use. In this work, we achieved simultaneous improvement in electrical conductivity and interlaminar shear strength through interleaved multi-walled carbon nanotubes (MWCNTs) doped thermoplastic polyurethane (TPU) conductive thin films (CTFs), which were prepared by a solution casting method. The experimental results showed that the electrical conductivity of the laminates increased by about 13 and 16 times in the transverse and thickness directions with only about 1 wt % MWCNTs content in the laminates. The end-notch flexure (ENF) tests showed that the mode II interlaminar fracture toughness (GIIC) of composites with 10 wt % MWCNTs CTF interleaf shows a significant increase of about 106%. The enhancement mechanism was further explored through microscopic morphological observation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47988.  相似文献   

19.
The reinforcement of mechanical properties of polymeric materials is often important for widening their applications; however, it remains a technical challenge to effectively increase toughness without degrading stiffness and strength of the polymers. In this work, by a facile methodology combining solution mixing and melt blending, poly(vinylidene fluoride)/multi‐walled carbon nanotubes (PVDF/MWCNTs) composite with exceptionally enhanced ductility and toughness are prepared. With only 0.2 wt % CNT loading, the elongation at break has increased from originally 138% to almost 500%, while toughness improved by as much as 386%, without compromising the stiffness and strength. Note that raw CNTs are directly dispersed in the matrix without any surface modification. In order to elucidate this novel enhancement of ductility of PVDF/MWCNTs composites, we carried out detailed analyses based on results from ultra‐small‐angle X‐ray scattering (USAXS), cryo‐fractured surface morphology, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). It is proposed that the enhanced ductility are contributed by a synergistic combination of “void pinning effect” of CNT, as well as the formation of γ phase polymorph as the interphase in the PVDF/CNTs composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43610.  相似文献   

20.
《Ceramics International》2017,43(2):1975-1979
Dy2TiO5 powders were synthesized by molten salt and solid-state methods. The influences of molten medium on phase compositions and microstructures were analyzed. The addition of molten salt lowered significantly the synthesis temperature and resulted in uniform powders. Green bodies compacted from the prepared powders were pressureless sintered at 1600 °C. Sinterability, mechanical properties and neutron absorption performance of the sintered pellets were studied. Results showed that molten salt synthesis resulted in materials with higher fracture toughness and bending strength, excellent hardness and neutron adsorption performance compared to the solid-state process. The neutron absorption rate reached 86.6% for 8 cm thick pellets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号