首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research studied the effect of Nb doping on Bi0.5Na0.5[Ti0.41Zr0.59]O3 (when Nb concentration = 0.00, 0.01, 0.03, 0.05, 0.07 and 0.09 mol fraction). Nb doped BNTZ ceramics were fabricated using a conventional mixed-oxide method. All samples were calcined at a temperature of 700 °C for 2 h and sintered at a temperature of 900 °C for 2 h. X-ray diffraction patterns suggested that the compounds possessed rhombohedral perovskite structure. SEM micrographs indicated that average grain size decreased as the amount of Nb additives increased. The electrical resistivity showed a decreasing trend with increasing Nb concentration due to excess charge present in the sample. The dielectric constant and dielectric loss of samples showed no particular trend when Nb was added but the optimum was observed when 0.05–0.07 Nb mol fraction was present in BNTZ ceramics. In this study, both microstructure and donor-type effects played an important role in determining electrical resistivity and dielectric properties of these ceramics.  相似文献   

2.
Barium titanate (BaTiO3, BT)–potassium niobate (KNbO3, KN) (BT–KN) nanocomplex ceramics with various KN/BT molar ratios were prepared by the solvothermal method. From a transmittance electron microscopy (TEM) observation, it was confirmed that KN layer thickness of the BT–KN nanocomplex ceramics was controlled from 0 to 44 nm by controlling KN/BT molar ratios. Their dielectric constants were measured at room temperature and 1 MHz, and a maximum dielectric constant of around 400 was measured for the BT–KN nanocomplex ceramics with a KN thickness of 22 nm. TEM observation revealed that below KN thickness of 22 nm, BT/KN heteroepitaxial interface was assigned to the strained interface while over 22 nm, the interface was assigned to the relaxed one. These results suggested that the strained heteroepitaxial interface could be responsible for the enhanced dielectric constants.  相似文献   

3.
In this study, Ba- and Ti-doped Li0.06(Na0.5K0.5)0.94NbO3 [(1 ? x)Li0.06(Na0.5K0.5)0.94NbO3xBaTiO3 (x = 0–0.07)] ceramics were prepared by using conventional solid state reaction method, and the microstructure and electric properties of these samples were investigated. The grain size distribution of non-doped Li0.06(Na0.5K0.5)0.94NbO3 ceramics was relatively wide. The microstructure was composed of grains ranging 1.1–5.0 μm in size. However, with increasing Ba and Ti content, the grain size distribution became narrow and the average grain size decreased from 2.0 to 0.9 μm in size. In particular, the microstructure of x = 0.07 sample was composed of grains ranging 0.5–2.2 μm in size. As a result, the frequency dispersion of dielectric constant for the (1 ? x)Li0.06(Na0.5K0.5)0.94NbO3xBaTiO3 (x = 0–0.07) ceramics was reduced and the mechanical quality factor Qm was enhanced with increasing Ba and Ti content.  相似文献   

4.
Dielectric ceramics with both excellent energy storage and optical transmittance have attracted much attention in recent years. However, the transparent Pb-free energy-storage ceramics were rare reported. In this work, we prepared transparent relaxor ferroelectric ceramics (1 − x)Bi0.5Na0.5TiO3xNaNbO3 (BNT–xNN) by conventional solid-state reaction method. We find the NN-doping can enhance the polarization and breakdown strength of BNT by suppressing the grain growth and restrained the reduction of Ti4+ to Ti3+. As a result, a high recoverable energy-storage density of 5.14 J/cm3 and its energy efficiency of 79.65% are achieved in BNT–0.5NN ceramic at 286 kV/cm. Furthermore, NN-doping can promote the densification to improve the optical transmittance of BNT, rising from ∼26% (x = 0.2) to ∼32% (x = 0.5) in the visible light region. These characteristics demonstrate the potential application of BNT–xNN as transparent energy-storage dielectric ceramics.  相似文献   

5.
Li2CO3 has been used as a sintering aid for fabricating lead-free ferroelectric ceramic 0.93(Bi0.5Na0.5TiO3)-0.07BaTiO3. A small amount (0.5 wt%) of it can effectively lower the sintering temperature of the ceramic from 1200 °C to 980 °C. Unlike other low temperature-sintered ferroelectric ceramics, the ceramic retains its good dielectric and piezoelectric properties, giving a high dielectric constant (1570), low dielectric loss (4.8%) and large piezoelectric coefficient (180 pC/N). The “depolarization” temperature is also increased to 100 °C and the thermal stability of piezoelectricity is improved. Our results reveal that oxygen vacancies generated from the diffusion of the sintering aid into the lattices are crucial for realizing the low temperature sintering. Owing to the low sintering temperature and good dielectric and piezoelectric properties, the ceramics, especially of multilayered structure, should have great potential for practical applications.  相似文献   

6.
[0.9(0.94Na0.5Bi0.5TiO3?0.06BaTiO3)?0.1NaNbO3]-xZnO (NBT-BT-NN-xZnO, x=0, 0.5 wt%, 1.0 wt%, 1.5 wt%, and 2.0 wt%) ferroelectric ceramics were fabricated using a conventional solid-state reaction method. The effects of ZnO content on dielectric, energy-storage and discharge properties were systematically investigated. Dielectric constant and difference between maximum and remanent polarization were significantly improved by ZnO doping. Dielectric constant of NBT-BT-NN-1.0-wt% ZnO was 3218 at 1 kHz and room temperature, i.e. one time bigger than that of pure NBT-BT-NN ceramic. As a consequence, a maximum energy-storage density of 1.27 J/cm3 with a corresponding efficiency of 67% was obtained in NBT-BT-NN-1.0-wt% ZnO ceramic. Moreover, its pulsed discharge energy density was 1.17 J/cm3, and 90% of which could be released in less than 300 ns. Therefore, ZnO doped NBT-BT-NN ceramic with a large energy-storage density and short release time could be a potential candidate for applications in high energy-storage capacitors.  相似文献   

7.
0.96(K0.48Na0.52)NbO3-0.03[Bi0.5(Na0.7K0.2Li0.1)0.5]ZrO3-0.01(Bi0.5Na0.5)TiO3 single crystals were grown for the first time by the solid state crystal growth method, using [001] or [110]-oriented KTaO3 seed crystals. The grown single crystal shows a dielectric constant of 2720 and polarization-electric field loops of a lossy normal ferroelectric, with Pr = 45 μC/cm2 and Ec = 14.9 kV/cm, while the polycrystalline samples with a dielectric constant of 828 were too leaky for P-E measurement due to humidity effects. The single crystal has orthorhombic symmetry at room temperature. Dielectric permittivity peaks at 26 °C and 311 °C, respectively, are attributed to rhombohedral-orthorhombic and tetragonal–cubic phase transitions. Additionally, Raman scattering shows the presence of an orthorhombic-tetragonal phase transition at ∼150 °C, which is not indicated in the permittivity curves but by the loss tangent anomalies. A transition around 700 °C in the high temperature dc conductivity is suggested to be a ferroelastic-paraelastic transition.  相似文献   

8.
(1?x)BaTiO3xK0.5Bi0.5TiO3 (abbreviated as BT–KBT, 0.10≦x≦0.15) dielectric ceramics were prepared by a conventional oxide mixing method. The effects of KBT content on the densification, microstructure and dielectric properties of BT ceramics were investigated. The density characterization results show that the addition of KBT significantly lowered the sintering temperature of BT ceramics to about 1280 °C. The XRD results showed that the phase compositions of all samples were pure tetragonal phases. The dielectric constant and dielectric loss firstly increased and then decreased with the increase of KBT. In addition, dielectric constant and dielectric loss versus frequency were characterized in the frequency range from 100 Hz to 2 MHz. It is found that the dielectric constant and the dielectric loss changed with the increase of KBT contents regularly.  相似文献   

9.
We report the development of a ceramic injection moulding (CIM) process to produce complex-shaped structures using high-performance microwave ceramic materials. In particular, we describe the synthesis methods and the structural, chemical and dielectric properties of Ba(Zn1/3Ta2/3)O3 (BZT) doped with Ni and Zr ceramics produced using ceramic injection moulding. Sintering the ceramic injection moulded Ba(Zn1/3Ta2/3)O3 to a relative density of ∼94% was possible at a temperature of 1680 °C and a time of 48 h. The best samples to date exhibit a dielectric constant, ɛr, of ∼30, a Q value, of ∼31,250 (i.e. tan δ < 3.2 × 10−5) at 2 GHz, and a temperature coefficient of resonance frequency, τf, of 0.1 ppm/°C.  相似文献   

10.
《Ceramics International》2016,42(3):4274-4284
Bi0.5(Na0.65K0.35)0.5TiO3 (BNKT) and Mn-modified Bi0.5(Na0.65K0.35)0.5(MnxTi1−x)O3 (BNKMT-103x), (x=0.0–0.5%) ferroelectric ceramics were synthesized by solid-state reaction method. Optimization of calcination temperature in Mn-doped ceramics was carried out for the removal of secondary phases observed in XRD analysis. BNKMT ceramics sintered at 1090 °C showed enhanced dielectric, piezoelectric and ferroelectric properties in comparison to pure BNKT. The average grain size was found to increase from 0.35 μm in BNKT to 0.52 μm in Bi0.5(Na0.65K0.35)0.5(Mn0.0025Ti0.9975)O3 (BNKMT-2.5) ceramics. The dielectric permittivity maximum temperature (Tm) was increased to a maximum of 345 °C with Mn-modification. AC conductivity analysis was performed as a function of temperature and frequency to investigate the conduction behavior and determine activation energies. Significant high value of piezoelectric charge coefficient (d33=176 pC/N) was achieved in BNKMT 2.5 ceramics. Improved temperature stability of ferroelectric behavior was observed in the temperature dependent P–E hysteresis loops as a result of Mn-incorporation. The fatigue free nature along with enhanced dielectric and ferroelectric properties make BNKMT-2.5 ceramic a promising candidate for replacing lead based ceramics in device applications.  相似文献   

11.
Piezoelectric ceramics with microstructure texturing were fabricated and evaluated to investigate its feasibility to use in piezoelectric energy harvesting in response to external mechanical impact. Textured 0.945(Bi0.5Na0.5)TiO3–0.55BaTiO3 (BNTBT) ceramics were prepared by tape casting of slurries containing a template SrTiO3 (STO). The orientation factor of more than 60% was obtained successfully when a plate-like SrTiO3 was used as the templates using a tape casting process. The sections perpendicular to the sheet plane of BNTBT ceramics exhibited preferentially [0 0 1] oriented orientation. Under low stress-loading, the voltage and power value of STO-added BNTBT were slightly higher than those of the specimen without STO. Meanwhile, the STO-added specimens showed excellent power over the STO-free specimen when a high stress was applied. When low stress was applied to the specimens, the reduction of piezoelectric characteristics by the addition of STO in BNTBT may be prominent in that the mixture of ferroelectric BNTBT and the non-ferroelectric STO has less ferroelectric features compared with the pure ferroelectric BNTBT. In contrast, under high field and stress signal the textured microstructure along to 〈1 0 0〉 is a feature of the improved piezoelectric behavior.  相似文献   

12.
《Ceramics International》2007,33(6):1041-1046
Lead-free (1  x)BaTiO3xBi0.5Na0.5TiO3 (x = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3) ferroelectric ceramics were fabricated by the conventional ceramic technique. Sintering was made at 1200 °C for 2–4 h in air atmosphere. The crystal structure was investigated by X-ray diffraction. The dielectric and ferroelectric properties were also studied. Room temperature permittivity was found to decrease as Bi0.5Na0.5TiO3 (BNT) content increases. Only the sample with 0.3 mol BNT was found to have relaxor behaviour. The Tc shifted slightly only for BNT addition lower than 0.1 mol. The highest Tc (about 150 °C) was obtained for 0.2 mol BNT addition. The remanent polarization, Pr, decreases whereas the coercive field, Ec, increases monotonously as the BNT content increases.  相似文献   

13.
The screen-printing multilayer grain growth (MLGG) technique is successfully applied to alkaline niobate lead-free piezoelectric ceramics. Highly textured (K0.5Na0.5)NbO3 (KNN) ceramics with 〈0 0 1〉 orientation (f = 93%) were fabricated by MLGG technique with plate-like NaNbO3 templates. The influence of sintering temperature on grain orientation and microstructure was studied. The textured KNN ceramics showed very high piezoelectric constant d33 = 133 pC/N, and high electromechanical coupling factor kp = 0.54. These properties were superior to those of conventional randomly oriented ceramics, and reach the level of those of textured KNN ceramic prepared by tape-casting technique. Compared with other grain orientation techniques, screen-printing is a simple, inexpensive and effective method to fabricate grain oriented lead-free piezoelectric ceramics.  相似文献   

14.
Tb3+/Yb3+ co-doped Y2O3 transparent ceramics were fabricated by vacuum sintering of the pellets (prepared from nanopowders by uniaxial pressing) at 1750 °C for 5 h. Zr4+ and La3+ ions were incorporated in Tb3+/Yb3+ co-doped Y2O3 nanoparticle to reduce the formation of pores which limits the transparency of ceramic. An optical transmittance of ∼80% was achieved in ∼450 to 2000 nm range for 1 mm thick pellet which is very close to the theoretical value by taking account of Fresnel’s correction. High intensity luminescence peak at 543 nm (green) was observed in these transparent ceramics under 976 and 929 nm excitations due to Yb–Tb energy transfer upconversion.  相似文献   

15.
A new ternary lead-free (0.67-x)BiFeO3-0.33BaTiO3-xLa(Mg1/2Ti1/2)O3 ferroelectric ceramic exhibited an obvious evolution of dielectric relaxation behavior. A significantly enhanced energy-storage property was observed at room temperature, showing a good energy-storage density of 1.66 J/cm3 at 13 kV/mm and a relatively high energy-storage efficiency of 82% at x = 0.06. This was basically ascribed to the formation of a slim polarization-electric field hysteresis loop, in which a high saturated polarization Pmax and a rather small remnant polarization Pr were simultaneously obtained. Particularly, its energy storage properties were found to depend weakly on frequency (0.2 Hz–100 Hz), and also to exhibit a good stability against temperature (25 °C–180 °C). The achievement of these characteristics was attributed to both a rapid response of the electric field induced reversible ergodic relaxor to long-range ferroelectric phase transition and a typical diffuse phase transformation process in the dielectric maxima.  相似文献   

16.
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

17.
Temperature-stable dielectric properties have been developed in the 0.86 K0.5Na0.5NbO3-0.14SrZrO3 solid solution system. High dielectric permittivity (ε = 2310) with low loss sustained in a broad temperature range (−55–201 °C), which was close to that of the commercial BaTiO3-based high-temperature capacitors. Transmission electron microscopy with energy dispersive X-ray analysis directly revealed that submicron grains exhibited duplex core-shell structure. The outer shell region was similar to the target composition, whilst a slightly poor content of Sr and Zr presented in the core region. Based on Lichtenecker’s effective dielectric function analysis along with Lorentz fit of the temperature dependence of dielectric permittivity, a plausible mechanism explaining the temperature-stable dielectric response in present work was suggested. These results offer an opportunity to achieve the X8 R specification high-temperature capacitors in K0.5Na0.5NbO3 based materials.  相似文献   

18.
Lanthanum doped BaTiO3 powders were synthesized by the hydro-phase method at atmospheric pressure, which controls the uniformity and particle size of the ceramic powders. The effects of La3+ ions concentration on the microstructure and dielectric properties of BaTiO3 ceramics were studied. The results suggested that both the average grain size and dielectric constants (εr and εmax) of the ceramics decreased as the concentration of La3+ increased. The ceramic met the X8R specifications: La3+ ions concentration of 3 mol%, a permittivity of 2322, low dielectric loss of less than 0.6% at room temperature, and average grain size of about 260 nm.  相似文献   

19.
With growing concerns over environmental protection, lead-free dielectric ceramic capacitors are attracting much attention. In this work, a series of novel (1-x) Na0.5Bi0.5TiO3-x Ba5LaTi3Ta7O30 ((1-x)NBT-xBLTT) dielectric composite ceramics were fabricated by a traditional solid‐state method. All the samples possess a compact microstructure with refined grain morphology with increasing BLTT content, and tend to exhibit a diphase dielectric composite as x reaches up to 0.05. Furthermore, the addition of BLTT enhances the dielectric relaxor behavior of NBT-based ceramics, such that the x = 0.15 composite ceramic exhibits a typical feature of relaxor ferroelectrics. As a result, a high recoverable energy-storage density of Wrec~3.67 J/cm3, an ultrahigh energy-storage efficiency of η~97.3%, and a high power density of PD~333 MW/cm3 can be simultaneously obtained in the x = 0.15 relaxor composite ceramic. This study provides an alternative way to design excellent energy-storage performances in NBT-based compositions through constructing dielectric relaxor composites via introducing non-polar tungsten bronze oxides.  相似文献   

20.
《Ceramics International》2016,42(3):3751-3756
Nanoparticles of potassium bismuth titanate K0.5Bi0.5TiO3 (KBT) with an average particle size of 38 nm were prepared using a stirring hydrothermal method. The pure KBT was obtained in 8 h reaction time instead of 24–48 h for conventional hydrothermal method. X-ray diffraction, Raman spectroscopy and TG analysis were used to check the proportion of hydroxyl group existing into the crude and the calcined KBT. A Hydroxyl group was found to affect the crystallite structure parameters and cell volume. When temperature increases from 25 to 1050 °C, the tetragonal structure presents a c/a ratio which decreases from 1.048 to 1.012. TG analysis and Raman vibration at high frequencies show that c/a is affected by hydroxyl group content below 750 °C and by potassium and bismuth vacancies above this temperature. The ceramic KBT showing a 300 nm size presents an improved εr=780 and a dielectric loss tan δ=0.062 at room temperature. Electric conductivity σac was also lowered to 10−6  m)−1 with an activation energy change at 673 K from 0.35 to 0.605 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号