首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
《Ceramics International》2017,43(12):9153-9157
Si3N4 based composites were successfully sintered by spark plasma sintering using low cost BaCO3, SiO2 and Al2O3 as additives. Powder mixtures were sintered at 1600–1800 °C for 5 and 10 min. Displacement-temperature-time (DTT) diagrams were used to evaluate the sintering behavior. Shrinkage curve revealed that densification was performed between 1100 and 1700 °C. The specimen sintered at 1700 °C showed the maximum relative density (99.8±0.1%), flexural strength (352±16 MPa), Vickers harness (11±0.1 GPa) and toughness (5.6±0.05 MPa m1/2).  相似文献   

2.
《Ceramics International》2017,43(12):8898-8904
The SrO-Na2O-Nb2O5-SiO2 (SNNS) glass-ceramics were prepared through the melt-quenching combined with the controlled crystallization technique. XRD results showed Sr6Nb10O30, SrNb2O6, NaSr2Nb5O15 with tungsten bronze structure and NaNbO3 with the perovskite structure. With the decrease of crystallization temperature, dielectric constant firstly increased and then decreased, while breakdown strength (BDS) was increased. High BDS of the glass-ceramics is attributed to the dense and uniform microstructure at low crystallization temperature. The optimal dielectric constant of 140±7 at 900 °C and BDS of 2182±129 kV/cm at 750 °C were obtained in SNNS glass-ceramics. The theoretical energy-storage density was significantly improved up to the highest value of 15.2±1.0 J/cm3 at 800 °C, which is about 5 times than that at 950 °C. The discharged efficiency increased from 65.8% at 950 °C to 93.6% at 750 °C under the electric field of 500 kV/cm by decreasing crystallization temperature.  相似文献   

3.
Fabrication of Ni4Nb2O9 ceramics via a reaction-sintering process was investigated. A mixture of raw materials was sintered into ceramics by bypassing calcination and subsequent pulverization stages. Ni4Nb2O9 phase appeared at 1300 °C and increased with increasing soak time. Ni4Nb2O9 content was found >96% in 1350 °C/2 h sintering pellets. A density of 5.71 g/cm3 was obtained for pellets sintered at 1350 °C for 2 h. This reaches 96.5% of the theoretical density. As the sintering temperature increased to 1350 °C, an abnormal grain growth occurred and grains >100 μm could be found. ?r of 15.4–16.9 are found in pellets sintered at 1200–1300 °C. Q × f increased from 9380 GHz in pellets sintered at 1200 °C to 14,650 GHz in pellets sintered at 1250 °C.  相似文献   

4.
An oxalate precipitation route is proposed for the synthesis of BaCe1−xYxO3 (x = 0 and 0.1) after calcination at 1100 °C. The precipitation temperature (70 °C) was a determinant parameter for producing a pure perovskite phase after calcination at 1100 °C for 1 h. TG/DTA measurements showed that the co-precipitated (Ba, Ce and Y) oxalate had a different thermal behaviour from single oxalates. Despite a simple grinding procedure, sintered BaCe0.9Y0.1O3−δ pellets (1400 °C, 48 h) presented 90.7% of relative density and preliminary impedance measurements showed an overall conductivity of around 2 × 10−4 S cm−1 at 320 °C.  相似文献   

5.
Ce1?xGdxO2?x/2 (GDC) powders with different Gd3+ contents (x = 0.05–0.3) were prepared by a simple citrate–nitrate combustion method. The influence of the Gd3+ doping content on the crystal structure and the electrical properties of GDC were examined. Many analysis techniques such as thermal analysis, X-ray diffraction, nitrogen adsorption analysis, scanning electron microscopy and AC impedance analysis were employed to characterize the GDC powders. The crystallization of the GDC solid solution occurred below 350 °C. The GDC powders calcined at 800 °C showed a typical cubic fluorite structure. The lattice parameter of GDC exhibited a linear relationship with the Gd3+ content. As compared with that sintered at other temperatures, the GDC pellet that sintered at 1300 °C had a high relative density of 97%, and showed finer microstructure. The conductivity of GDC was firstly increased and then decreased with the increase of the Gd3+ content. The sintered GDC sample with the Gd3+ content of 0.25 exhibited the highest conductivity of 1.27 × 10?2 S cm?1 at 600 °C.  相似文献   

6.
A homogeneous KNbO3 (KN) phase was formed in specimens that were sintered at 1020 °C and 1040 °C, without formation of the K2O-deficient secondary phase, indicating that the amount of evaporation of K2O during sintering was very small. However, the KN liquid phase was formed during sintering and assisted the densification of the KN ceramics. A dense microstructure was developed in the specimen sintered at 1020 °C for 6 h and abnormal grain growth occurred in this specimen. A similar microstructure was observed in the specimens sintered at 1040 °C for 1.0 h. The dielectric and piezoelectric properties of the KN ceramics were considerably influenced by the relative density. The KN ceramics sintered at 1020 °C for 6 h, which showed a large relative density that was 95% of the theoretical density, exhibited promising electrical properties: ɛT33/ɛo of 540, d33 of 109 pC/N, kp of 0.29, and Qm of 197.  相似文献   

7.
《Ceramics International》2016,42(15):17074-17080
The effects of Fe and SiC additions on the densification, microstructure, and ablation properties of ZrB2-based ceramics were investigated in this study. The sample powders were conventionally mixed by cemented carbide ball then sintered by spark plasma sintering. The ablation rates and behavior of the ceramics were investigated under an oxyacetylene torch environment at about 3000 °C. A sample with high relative density (96.3%), high flexural strength (415.6 MPa), and low linear ablation rate (−0.4 µm/s) was obtained via SPS at 1600 °C. Adding 4 vol% Fe was more beneficial to the density of ZrB2 sintered at 1600 °C as compared to ZrB2 sintered at 1800 °C. The ablation behavior and rates were similar among samples sintered at 1600 °C and 1800 °C.  相似文献   

8.
《Ceramics International》2016,42(15):17081-17088
Commercial Y2O3 nanopowder was used to fabricate transparent Y2O3 ceramics by spark plasma sintering under the pressure of 100 MPa for 20 min with the heating rate of 100 °C/min. The microstructures, mechanical and optical properties of the Y2O3 ceramics sintered at different temperatures were investigated in detail. Densification occurred up to a sintering temperature of 1500 °C, and above 1500 °C, rapid grain growth and pore growth occurred. The highest relative density of 99.58% and the minimum average grain size of 0.58±0.11 µm were obtained at 1500 °C. The flexural strength, hardness and fracture toughness of the optimal spark plasma sintered Y2O3 ceramic were 122 MPa, 7.60 GPa and 2.06 MPa.m1/2, respectively. The Y2O3 ceramic sintered at 1500 °C had the in-line transmission of about 11–54% and 80% in the wavelength range of 400–800 nm and 3–5 µm, respectively.  相似文献   

9.
The fracture strength, fracture toughness and apparent Young’s modulus of LaFeO3 ceramics in the temperature region 25–800 °C are reported. The fracture strength of the material was observed to increase from 202 ± 18 MPa at room temperature to 235 ± 38 MPa at 800 °C. The room temperature fracture toughness was 2.5 ± 0.1 MPa m1/2. The fracture toughness decreased to 2.1 ± 0.1 MPa m1/2 at 600 °C, followed by an increase to 3.1 ± 0.3 MPa m1/2 at 800 °C. The temperature dependence of the fracture toughness correlates well with the crystallographic strain, |(ac)|/(a+c), and ferroelastic toughening of LaFeO3 materials is inferred. Non-elastic stress–strain behaviour of the LaFeO3 materials due to ferroelasticity was confirmed by cyclic compression experiments, and residual strain was observed in the material after unloading.  相似文献   

10.
Boron carbide (B4C)-based ceramics were pressureless sintered to a relative density of 96.1% at 2150 °C, with the co-incorporation of tungsten carbide and pyrolytic carbon. The as-batched boron carbide power was 7.89 m2 g?1 in surface area. A level of fracture toughness as high as 5.80 ± 0.12 MPa m1/2 was achieved in the BW-6C composite. Sintering aids of carbon and tungsten boride were formed by an in situ reaction. The toughness improvement was attributed to the presence of thermal residual stress as well as the W2B5 platelets. The thermal conductivity and thermal expansivity of the BW-6C composite as a function of temperature are also reported in this work. Our current study demonstrated that the B4C–W2B5 composites could be potential candidate materials for structural applications.  相似文献   

11.
《Ceramics International》2017,43(9):7106-7114
This study reports the effect of milling type on the microstructural, physical and mechanical properties of the W-Ni-ZrC-Y2O3 composites. Powder blends having the composition of W-1 wt% Ni-2 wt% ZrC-1 wt% Y2O3 were milled at room temperature for 12 h using a Spex™ 8000D Mixer/Mill or cryomilled in the presence of externally circulated liquid nitrogen for 10 min using a Spex™ 6870 Freezer/Mill or sequentially milled at room temperature and cryogenic condition. Then, powders were compacted in a hydraulic press under a uniaxial pressure of 400 MPa and green bodies were sintered at 1400 °C for 1 h under Ar/H2 atmosphere. Phase and microstructural characterization of the milled powders and sintered samples were performed using X-ray diffractometer (XRD), TOPAS software, scanning electron microscope/energy dispersive spectrometer (SEM/EDS), X-ray fluorescence (XRF) spectrometer and particle size analyzer (PSA). Archimedes density and Vickers microhardness measurements, and sliding wear tests were also conducted on the sintered samples. The results showed that sequential milling enables the lowest average particle size (214.90 nm) and it is effective in inhibiting W grain coarsening during sintering. The cryomilled and sintered composite yielded a lower hardness value (5.80±0.23 GPa) and higher wear volume loss value (149.42 µm3) than that of the sintered sample after room temperature milling (6.66±0.39 GPa; 102.50 µm3). However, the sequentially milled and sintered sample had the highest relative density and microhardness values of 95.09% and 7.16±0.59 GPa and the lowest wear volume loss value of 66.0 µm3.  相似文献   

12.
Al2O3/SiC micro/nano composites were prepared by axial pressing of poly(allyl)carbosilane-coated submicrometre alumina powder at elevated temperature (called also warm pressing, or plastic forming) with subsequent pressureless sintering in the temperature interval between 1700 and 1850 °C. Warm pressing at 350 °C and 50 MPa resulted in green bodies with high mechanical strength and with markedly higher density than in green bodies prepared by cold isostatic pressing of the same powder at 1000 MPa. The sintering of warm pressed specimens moreover yielded the composites with higher final density (less than 4% of residual porosity) with the microstructure composed of micrometer-sized alumina grains (D50 < 2 μm) with inter- and intragranular SiC precipitates. High sintering temperatures (>1800 °C) promoted the formation of intergranular platelets identified by TEM as 6H polytype of α-SiC. The maximum hardness (19.4 ± 0.5 GPa) and fracture toughness (4.8 ± 0.1 MPa m1/2) were achieved in the composites containing 8 vol.% of SiC, and sintered for 3 h at 1850 °C. These values are within the limits reported for nanocomposites Al2O3/SiC by other authors and do not represent any significant improvement in comparison to monolithic alumina.  相似文献   

13.
The crystallization of mullite in amorphous diphasic gel aged for 6 months has been studied using non-isothermal differential scanning calorimetry (DSC) and powder X-ray diffraction with Rietveld structure refinement analysis. The diphasic premullite gels undergo structural changes by aging even when they are calcined at 700 °C. These changes imply segregation of the sample to Al2O3-rich and SiO2-rich regions. From the Al2O3-rich region crystallizes poorly defined AlSi spinel at 977 °C followed by two-step mullite crystallization in the temperature interval of 1200–1300 °C. Two overlapped exothermic peaks on DSC scan of aged gel were observed; the first at 1233 °C and the second at 1261 °C. The former is attributed to mullite crystallization by transformation of AlSi spinel, by which excess alumina occurs, which in the second step of mullitization reacts with amorphous SiO2-rich phase. The activation energy for mullite crystallization in the first step was Ea=935±14 kJ mol−1 and the Avrami exponent n=2.5. The values Ea=1119±25 kJ mol−1 and n=1.2 were obtained for mullite formation in the second step. If amorphous SiO2-rich phase is extracted from the sample, the value Ea=805±26 kJ mol−1 is obtained. Mullite crystallizing from AlSi spinel (when SiO2-rich phase has been extracted) differentiates compositionally from that formed by both reactions. Smaller unit cell parameters and higher amount of oxygen vacancies are incorporated into tetrahedral positions of mullite structure, as was determined by Rietveld structure refinement method.  相似文献   

14.
《Ceramics International》2017,43(18):16403-16407
In this paper, we have reported the signature of multiferroicity and pyroelectricity in BaFe12O19 hexaferrite close to room temperature. The BaFe12O19 hexaferrite samples are synthesized by co-precipitation method at different sintering temperature ranging from 800 to 1200 °C and study their structural, ferroelectric, magnetic, magnetoelectric and pyroelectric properties. X-ray Diffraction patterns show the pure phase formation for all samples. Morphological changes are examined through the scanning electron microscope. The maximum ferroelectric polarization (0.66 μC/cm2) is observed for the sample sintered at 1200 °C, however maximum magnetic polarization 74 emu/g is observed for sample sintered at 1000 °C. Magneto-electric coupling measurements are also performed through dynamic method and average magneto-electric coupling coefficient (~ 7.05 × 10−7 mV/cm Oe2) is observed at room temperature for the sample sintered at 1200 °C. Furthermore, maximum pyroelectric constant (147 × 10−13C/cm2 °C) is observed at 75 °C for BaFe12O19 samples sintered at 1200 °C. The observation of both multiferroicity and pyroelectricity close to room temperature in BaFe12O19 hexaferrite is interesting and useful for multifunctional devices.  相似文献   

15.
1 mol% of MgO was added together with 7 mol% of Yb2O3 as sintering additives to silicon nitride powder to fabricate advanced silicon nitride ceramics with both high thermal conductivity and low dielectric loss at 2 GHz. The mixed powder was CIPed at a pressure of 120 MPa and was gas-pressure sintered at 1900 °C to >98% of theoretical density. The sintered Si3N4 sample exhibited a high thermal conductivity of ~100 W m?1 K?1 and a loss tangent (tan δ) of ~4 × 10?4, concurrently. The tan δ was further reduced by half after the heat treatment at 1300 °C for 24 h. The improvement in tan δ due to the annealing was explained from the point of crystallization of the intergranular glassy phase.  相似文献   

16.
Titanium carbide ceramics with different contents of boron or B4C were pressureless sintered at temperatures from 2100 °C to 2300 °C. Due to the removal of oxide impurities, the onset temperature for TiC grain growth was lowered to 2100 °C and near fully dense (>98%) TiC ceramics were obtained at 2200 °C. TiB2 platelets and graphite flakes were formed during sintering process. They retard TiC grains from fast growth and reduced the entrapped pores in TiC grains. Therefore, TiC doped with boron or B4C could achieve higher relative density (>99.5%) than pure TiC (96.67%) at 2300 °C. Mechanical properties including Vickers’ hardness, fracture toughness and flexural strength were investigated. Highest fracture toughness (4.79 ± 0.50 MPa m1/2) and flexural strength (552.6 ± 23.1 MPa) have been obtained when TiC mixed with B4C by the mass ratio of 100:5.11. The main toughening mechanisms include crack deflection and pull-out of TiB2 platelets.  相似文献   

17.
Glass and glass-ceramic coatings on ceramic tiles have been manufactured by plasma-spraying high-performance CAS (in wt%—SiO2, 60%; Al2O3, 15%; CaO, 23%; others, traces) and CZS (in wt%—SiO2, 50%; CaO, 31%; ZrO2, 16.5%; Al2O3, 2%; others, traces) glass frits. The CZS system has a surface crystallization at about 1050 °C. Such behaviour would not easily allow to obtain a fully crystalline bulk glass-ceramic, but the defectiveness of the plasma-sprayed coating supplies many nucleation sites. Thus, it becomes completely crystalline and well sintered after a 850 °C for 30 min + 1050 °C for 15 min treatment. The CAS frit, designed not to produce significant crystallization, is well sintered after a 850 °C for 30 min + 950 °C for 30 min thermal treatment, but remains too brittle due to its glassy nature. A 1050 °C treatment allows a few pseudowollastonite crystals to form in a glassy matrix; their formation also hinders sintering. Thus, mechanical properties are inferior to heat-treated plasma-sprayed CZS.  相似文献   

18.
Microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics were investigated as a function of packing fraction and bond valence. For A2+B6+O4 specimens sintered at 800–1100 °C for 3 h, a single phase with a tetragonal scheelite structure was detected, and the theoretical density was higher than 93% throughout the composition. Although the ionic polarizability of Ba2+ ion was larger than that of Ca2+ ion, the dielectric constant (K) of BaB6+O4 showed a smaller value than that of CaB6+O4. These results could be attributed to changes of the packing fraction due to the effective ionic size. The Q·f value was largely dependent on the packing fraction, as well as the percentages of theoretical density. The temperature coefficients of the resonant frequencies (TCFs) of the specimens were affected by the bond valence of oxygen. The specimens of CaMoO4 sintered at 1000 °C for 3 h showed the K of 10.8, Q·f of 76,990 GHz and TCF of ?22.8 ppm/°C, respectively.  相似文献   

19.
《Ceramics International》2017,43(13):9778-9782
Structural, electromagnetic, and dielectric properties of Li0.4Fe2.4Zn0.2O4 lithium-zinc ferrite sintered by 2.4 MeV pulsed electron beam heating at 1050 °С for 2 h were investigated. The formation of ferrite with a single-phase cubic spinel structure was confirmed by X-ray diffraction analysis. The average grain size of ferrite ceramic was determined by SEM analysis and its value was 1.7 µm. The radiation-thermal sintered samples are characterized by a saturation magnetization of 67.8 emu/g, the Curie temperature of 508 °C, AC electrical resistivity of 2.4×104 Ω cm (at 25 °C). The frequency dependences of permittivity and the loss tangent were obtained in (20 – 2×106) Hz frequency range. The behavior of ε′ is characterized by high dispersion caused by relaxation polarization in the investigated frequency range. The results were compared to the LiZn ferrite characteristics sintered by traditional thermal heating.  相似文献   

20.
The densification of hot-pressed ZrN ceramics doped with Zr or Ti have been investigated at 1500–1700 °C. It is shown that either Zr or Ti additive can facilitate the densification process. ZrN with 20 mol% Zr or Ti (named ZNZ and ZNT) sintered at 1700 °C can achieve above 98% relative densities whereas densification temperature up to 2000 °C is necessary for pure ZrN. The densification improvements are attributed to solid solution of Zr or Ti into ZrN to form non-stoichiometric ZrN1?x or (Zr, Ti)N1?x. The microstructures and mechanical properties of ZNZ and ZNT samples have been examined. Large grain size and flat fracture surface existed in ZNT sample sintered at 1700 °C, which lead to poor toughness as low as 2.3 MPa m1/2. On the contrary, the fracture toughness of ZNZ sample sintered at 1700 °C was up to 5.9 MPa m1/2, attributed to fine and uniform grain size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号