首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Ceramics International》2016,42(13):14463-14468
The development of reliable joining technology is of great importance for the full use of SiC. Ti3SiC2, which is used as a filler material for SiC joining, can meet the demands of neutron environment applications and can alleviate residual stress during the joining process. In this work, SiC was joined using different powders (Ti3SiC2 and 3Ti/1.2Si/2C/0.2Al) as filler materials and spark plasma sintering (SPS). The influence of the joining temperature on the flexural strength of the SiC joints at room temperature and at high temperatures was investigated. Based on X-ray diffraction and scanning electron microscopy analyses, SiC joints with 3Ti/1.2Si/2C/0.2Al powder as the filler material possess high flexural strengths of 133 MPa and 119 MPa at room temperature and at 1200 °C, respectively. The superior flexural strength of the SiC joint at 1200 °C is attributed to the phase transformation of TiO2 from anatase to rutile.  相似文献   

2.
SiC ceramics were reaction joined in the temperature range of 1450–1800 °C using TiB2-based composites starting from four types of joining materials, namely Ti–BN, Ti–B4C, Ti–BN–Al and Ti–B4C–Si. XRD analysis and microstructure examination were carried out on SiC joints. It is found that the former two joining materials do not yield good bond for SiC ceramics at temperatures up to 1600 °C. However, Ti–BN–Al system results in the connection of SiC substrates at 1450 °C by the formation of TiB2–AlN composite. Furthermore, nearly dense SiC joints with crack-free interface have been produced from Ti–BN–Al and Ti–B4C–Si systems at 1800 °C, i.e. joints TBNA80 and TBCS80, whose average bending strengths are measured to be 65 MPa and 142 MPa, respectively. The joining mechanisms involved are also discussed.  相似文献   

3.
《Ceramics International》2016,42(5):6319-6328
The development of new composite fillers is crucial for joining ceramics or ceramics to metals because the composite fillers exhibit more advantages than traditional brazing filler metal. In this research, novel B4C reinforced Ag–Cu–Ti composite filler was developed to braze SiC ceramics. The interfacial microstructure of the joints was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of B4C addition and brazing temperature on the microstructure evolution and mechanical properties of the joints was analyzed. The results revealed that TiB whisker and TiC particles were simultaneously synthesized in the Ag-based solid solution and Cu-based solid solution due to the addition of B4C particles. As the brazing temperature increased, the thickness of Ti3SiC2+Ti5Si3 layers adjacent to SiC ceramic increased. Desirable microstructure similar to the metal matrix reinforced by TiB whisker and TiC particles could be obtained at brazing temperature of 950 °C. The maximum bending strength of 140 MPa was reached when the joints brazed at 950 °C for 10 min, which was 48 MPa (~52%) higher than that of the joints brazed using Ag–Cu–Ti filler.  相似文献   

4.
Dense Ti3Si(Al)C2-based ceramics were synthesized using reactive melt infiltration (RMI) of Al70Si30 alloy into the porous TiC preforms. The effects of the infiltration temperature on the microstructure and mechanical properties of the synthesized composites were investigated. All the composites infiltrated at different temperatures were composed of Ti3Si(Al)C2, TiC, SiC, Ti(Al, Si)3 and Al. With the increase of infiltration temperature from 1050 °C to 1500 °C, the Ti3Si(Al)C2 content increased to 52 vol.% and the TiC content decreased to 15 vol.%, and the Vickers hardness, flexural strength and fracture toughness of Ti3Si(Al)C2-based composite reached to 9.95 GPa, 328 MPa and 4.8 MPa m1/2, respectively.  相似文献   

5.
Flash joining of CVD-SiC coated Cf/SiC samples with a Ti interlayer was achieved using a Spark Plasma Sintering machine. The influence of different heating powers and discharge times were investigated. The sample flash joined at a maximum heating power of 2.2 kW (peak electric current of 370 A) within 7 s showed the highest apparent shear strength of 31.4 MPa, which corresponds to the interlaminar shear strength of the composites. A maximum joining temperature of ∼1237 °C was reached during the flash joining. An extremely rapid heating rate of 9600 °C/min combined with a very short processing time hindered any reaction between the CVD-SiC coating and the Ti interlayer. The formation of a metallic joint (Ti based) in the absence of any detectable reaction phase is proposed as a new joining mechanism. For a conventionally joined SPS sample, the formation of titanium silicide phases inhibited the formation of a bond.  相似文献   

6.
《Ceramics International》2020,46(5):5937-5945
SiC whisker coating was prepared on the surface of C/C composite successfully by CVD, and transient liquid phase (TLP) diffusion bonding was employed to realize the joining of SiC whisker coating modified C/C composite and Ti2AlNb alloy using Ti–Ni–Nb foils as interlayer. The microstructure, shear strength and fracture behavior were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), X-ray diffraction (XRD) and universal testing machine. The results show that SiC has good compatibility with C/C composite, and gradient interface formed between SiC-modified C/C composite and Ti2AlNb alloy. When the bonding experiment was carried out under bonding temperature of 1040 °C and holding time of 30min with 5 MPa pressure in vacuum, the joints formed well and no obvious defects can be observed. The typical microstructure of joints is C/C composite/SiC + TiC/Ti–Ni compounds + Ti–Ni–Nb solid solutions/residual Nb/diffusion reaction layer/Ti2AlNb alloy. With the increasing of bonding temperature, the thickness of joining area increased due to sufficient element diffusion. However, when bonding temperature is elevated to 1060 °C, some defects such as cracks and slag inclusions exist in the interface layer between interlayer and Ti2AlNb. The joints with maximum average shear strength of 32.06 MPa are bonded at 1040 °C for 30min. C, SiC and TiC can be found on the fracture surface of joints bonded at 1040 °C which indicated that fracture occurred at the interface layer adjacent SiC layer.  相似文献   

7.
CVD–SiC coated C/SiC composites (C/SiC) were joined by spark plasma sintering (SPS) by direct bonding with and without the aid of joining materials. A calcia-alumina based glass–ceramic (CA), a SiC + 5 wt% B4C mixture and pure Ti foils were used as joining materials in the non-direct bonding processes. Morphological and compositional analyses were performed on each joined sample. The shear strength of joined C/SiC was measured by a single lap test and found comparable to that of C/SiC.  相似文献   

8.
Immersion corrosion tests of TiC0.8, TiC, TiC–20 vol% SiC, TiC–40 vol% SiC and SiC have been performed in molten FLiNaK salt at 800 °C for 25–200 h under argon cover gas. All of these five samples showed small mass loss and relatively good corrosion resistance in molten FLiNaK salt. The corrosion patterns of TiC0.8, TiC, TiC–20 vol% SiC and TiC–40 vol% SiC were inter-granular corrosion, which were attributed to the depletion of Ti along the grain boundaries. SiC exhibited a general corrosion process in which a carbon-rich layer formed on the surface, resulting from the depletion of Si. The carbon-rich layer protected SiC against further corrosion, hence lowering the corrosion rate. The corrosion results of TiC–20% SiC and TiC–40% SiC revealed the corrosion resistance of TiC could be improved by adding SiC. And the contribution of SiC to better corrosion resistance has been elucidated.  相似文献   

9.
In this article, Ti/TiC/SiC/Al powder mixtures with molar ratios of 4:1:2:0.2 were high energy ball-milled, compacted, and heated in vacuum with various schedules, in order to reveal the effects of temperature, soaking time, thickness of the compacts, and carbon content on the purity of the sintered compacts. X-ray diffraction and scanning electron microscopy were employed to investigate the phase purity, particle size and morphology of the synthesized samples. It was found that the Ti3SiC2 content nearly reached 100 wt.% on the surface layer of the sintered compacts prepared in the temperature range from 1350 °C to 1400 °C for 1 h. Powder containing 91 wt.% Ti3SiC2 was successfully synthesized by heating 6 mm green compacts of 4Ti/1TiC/2SiC/0.2Al at 1380 °C for 1 h in vacuum. The excessive carbon content failed to improve the purity of Ti3SiC2 powder. TiC phase was the main impurity in the formation process of Ti3SiC2.  相似文献   

10.
《Ceramics International》2017,43(5):4151-4158
In this paper, a novel brazing process based on in-situ alloying concept was carried out to join Cf/SiC composite to TC4 alloy at 940 °C for 20 min. Mixed powders of Ti-Zr-Cu-Ni alloy and pure Ti metal were used as interlayer. In the process, Ti-Zr-Cu-Ni alloy melted and then dissolved pure Ti metal via liquid-solid reactions, achieving in-situ alloying of the interlayer. The interfacial microstructure and formation mechanism of the brazed joints were investigated. The effect of Ti powder content on the microstructure and the mechanical properties of joints were analyzed. The results showed that: the maximum lap-shear strength of the in-situ alloying brazed joints was 283±11 MPa when using (Ti-Zr-Cu-Ni)+40 vol% Ti composite filler, and this value was 79% higher than the mechanical strength when using Ti-Zr-Cu-Ni alone. A reaction layer of (Ti,Zr)C+Ti5Si3 formed near Cf/SiC composite side, while a diffusion layer of Ti2Cu+Ti(s,s) formed near Ti-6Al-4V side. In the interlayer, lots of Ti(s,s) were distributed uniformly and few of Ti-Cu compounds were found, contributing to the plasticity of joints. Adding moderate Ti powder was beneficial for improving the interfacial reaction between Cf/SiC composite and filler material, which affected the lap-shear strength of joints.  相似文献   

11.
A dense SiC/Ti3Si(Al)C2 composite was synthesized by in situ hot pressing powders of Si, TiC and Al as a sintering additive at 1500 °C for 2 h under 30 MPa in Ar atmosphere. This composite has a fine-grained and homogeneous microstructure with grain sizes of 5 μm for Ti3Si(Al)C2 and of 1 μm for SiC. The SiC/Ti3Si(Al)C2 composite possesses an improved oxidation resistance, with parabolic rate constants of 4.57 × 10?8 kg2/m4/s at 1200 °C and 1.31 × 10?7 kg2/m4/s at 1300 °C. This study provides an experimental evidence to confirm the formation of amorphous phases in the oxide scale of the SiC/Ti3Si(Al)C2 composite. Microstructure and phase composition of the SiC/Ti3Si(Al)C2 composite and oxide scales were identified by X-ray diffractometry and scanning electron microscopy. The mechanism for the enhanced oxidation resistance has been discussed.  相似文献   

12.
TiC/Ti3SiC2 composites were synthesized with Ti/Si/C and Al (in which extra C addition ranges from 0 to 25 wt.%) as starting powders by hot-pressed sintering method at 1400 °C under 30 MPa. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to evaluate the phase composition and the fracture surface. The results reveal that with the increase of extra C addition, the content of Ti3SiC2 phase decreases while the content of TiC phase increases. Graphite phase is detected in the samples with extra C addition of 20 wt.% and 25 wt.%. The bending strength decreases from 554.81 MPa to 57.44 MPa due to the decrease of the densification and Ti3SiC2 phase content. The electrical conductivity falls from 42,474.52 s/cm to 1524.95 s/cm, resulting from lower Ti3SiC2 phase content and higher contact resistance.  相似文献   

13.
In order to improve the bonding property of joint between SiC modified carbon/carbon (C/C) composites and Li2O–Al2O3–SiO2 (LAS) glass ceramics, SiC nanowires were attempted as the reinforcement materials in the interface region of SiC transition layer and Li2O–MgO–Al2O3–SiO2 (LMAS) gradient joining interlayer. The C/C–LAS joint with SiC nanowire-reinforced interface layer was prepared by a three-step technique of pack cementation, in situ reaction and hot-pressing. The microstructure and thermal shock resistance of the as-prepared joints were examined. The average shear strength of the joined samples with SiC nanowires increased from 24.9 MPa to 31.6 MPa after 40 thermal cycles between 1000 °C and room temperature, while that of the joined samples without SiC nanowires dropped from 21.4 MPa to 8.3 MPa. The increase of thermal shock resistance of the C/C–LAS joints was mainly attributed to the toughening mechanism of SiC nanowires by pullout, bridging and crack deflection.  相似文献   

14.
SiC monoliths containing 5 wt.% Al2O3-Y2O3 additive were joined using a thin Ti3AlC2, TiC, or Ti filler. After joining at 1900 °C for 5 h under 3.5 MPa, the joint properties were compared in terms of the microstructure, phase evolution, joining strength, and possible elimination of the joining layer. Although all samples showed a sound joint, the microstructure differed according to the filler. SiC joined with Ti3AlC2 filler showed an indistinguishable joining interface due to the filler decomposition followed by solid-state diffusion into the SiC base, whereas TiC filler remained at the interface without showing decomposition or diffusion. In contrast, the Ti filler showed a possible elimination of the joining layer because of the diffusion of Ti and the formation of TiC. The mean joining strengths for the Ti3AlC2, TiC, and Ti fillers were 300, 234, and 248 MPa, respectively, which were comparable to that of the base SiC material (250 MPa).  相似文献   

15.
《Ceramics International》2017,43(11):8126-8132
A novel composite interlayer with a reinforced network was designed using a SiC ceramic with a network structure and Ti-Ni-Nb composite filler foils, to which the Nb and BN-SiO2 ceramic were successfully brazed under vacuum. For a brazing temperature of 1160 °C and holding time of 10 min, the interfacial microstructure of the Nb/BN-SiO2 ceramic joint was Nb/(βTi,Nb)-TiNi eutectic structure+(βTi,Nb)2Ni+SiC+TiC/TiN+Ti2N+TiB+Ti5Si3+TiO/BN-SiO2 ceramic. In addition, the shear strength and nano-hardness were analyzed to evaluate the effect of the composite interlayer with a network reinforcement architecture on the mechanical properties of the joint. During brazing, the Ti-Ni-Nb filler metal infiltrated and reacted with the SiC to form the network reinforcement architecture, resulting in the residual stress being relieved and the mechanical performance of the joint being significantly improved. A maximum shear strength of 102 MPa was achieved, which was 60 MPa (142%) higher than that of the joint brazed without the network reinforcement architecture. A reduction in the residual stress on the BN-SiO2 ceramic side from 328 MPa to 210 MPa was observed with the network reinforcement architecture, and the fracture path of the joint changed from the surface of the BN-SiO2 ceramic to the interfacial reaction zone.  相似文献   

16.
The ZrB2–20 vol.% SiC (ZS) composites were diffusion bonded to Nb using pure Ti interlayer. Effects of joining temperature on the microstructure and mechanical properties of the joints were investigated. The results show that Ti reacted with Nb and ZS to form a typical three layers in the joint. An in situ synthesized TiB whiskers array which consisted of two types of TiB was produced in the reaction layer. The formation mechanism of TiB was analyzed. Mutual diffusion between Ti and Nb led to a ductile β-(Ti, Nb) layer on Nb side. Joining temperature influenced the thickness of reaction layers and distribution of TiB seriously. The maximum shear strength reached 158 MPa with bonding temperature at 1200 °C for 60 min.  相似文献   

17.
CVD silicon carbide was brazed to itself using two Ag–Cu–Ti braze alloys reinforced with SiC particulates to control braze thermal expansion and enhance joint strength. Powders of the braze alloys, Ticusil (composition in wt%: Ag–26.7Cu–4.5Ti, TL: 900 °C) and Cusil-ABA (Ag–35.3Cu–1.75Ti, TL: 815 °C) were pre-mixed with 5, 10 and 15 wt% SiC particulates (~20–30 μm) using glycerin to create braze pastes that were applied to the surfaces to be joined. Joints were vacuum brazed and examined using optical microscopy (OM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and the Knoop hardness test. The SiC particles were randomly distributed in the braze matrix and bonded to it via reaction with the titanium from the braze alloy. Titanium together with Si and C segregated at the particle/braze interface, and promoted nucleation and precipitation of the Cu-rich secondary phase on particle surfaces. The Si–Ti–C-rich reaction layers also formed at the interface between CVD SiC substrate and the braze alloy. The loss of Ti in the reaction with SiC particulates did not impair either the bond quality or the thickness of the reaction layer on the CVD SiC substrate. Microhardness measurements showed that the dispersed SiC particulates lowered the braze hardness by depleting the braze matrix of Ti. Theoretical calculations indicated the CTE of the braze to decrease by nearly 45–60% with the incorporation of about 45 vol% SiC.  相似文献   

18.
《Ceramics International》2016,42(10):11982-11988
In this paper, Ti3Si(Al)C2 based ceramics were fabricated by reactive melt infiltration (RMI) of TiC/TiO2 preforms with liquid silicon. The microstructure, phase composition, and mechanical properties of the Ti3Si(Al)C2 based ceramics have been investigated to understand the effect of phase composition of the preforms on the formation mechanisms of Ti3Si(Al)C2. The preforms with different content of TiO2 infiltrated at 1500 °C with liquid silicon for 1 h were composed of Ti3Si(Al)C2, Al2O3, TiC, TiSixAly and residual Al. The prior generated Al2O3 phases inhibited the dispersion of Ti3Si(Al)C2 phases, resulting in the drastically grain growth of Ti3Si(Al)C2. Subsequently, the microstructure with gradually increasing Ti3Si(Al)C2 grain size resulted in the decrease of the bending strength and fracture toughness of samples. When the content of TiO2 reached 20 wt%, the bending strength reached the maximum, 326.6 MPa. The fracture toughness attained the maximum, 4.3 MPa m1/2, when the content of TiO2 was 10 wt%.  相似文献   

19.
《Ceramics International》2015,41(6):7283-7288
A novel liquid preceramic polymer (V-PMS) was synthsized by modifying polymethylsilane (PMS) with 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane ([CH3(CH2CH)SiO]4, D4Vi), for joining SiC ceramics under ambient pressure. The obtained V-PMS with a viscosity of 125 Pas at room temperature exhibits excellent thermal properties and bonding strength. The ceramic yield of V-PMS treated at 1200 °C under Ar atmosphere is 84.5%, which is 38.3% higher than the original PMS. The shear strengths of the SiC joints joined by V-PMS at 800 °C, 1000 °C and 1200 °C under N2 atmosphere are 11.9 MPa, 34.5 MPa and 29.9 MPa, respectively. The excellent performances make the obtained V-PMS promising candidates for joining SiC ceramics in high-temperature applications.  相似文献   

20.
The aim of this work was to investigate the effect of silicon content on the formation and morphology of Ti3SiC2 based composite via infiltration of porous TiC preforms. The gelcasting process was used for fabrication of preforms. It was found that the infiltrated sample at 1500 °C for 90 min from a mixture of 3TiC/1.5Si containing 92 wt.% Ti3SiC2. With the increasing of TiC and SiC impurity phases, Vickers hardness was increased to the maximum value of 12.9 GPa in Ti3SiC2–39 wt.%TiC composite. Microscopic observations showed that the Ti3SiC2 matrix was composed of columnar, platelike and equiaxial grains with respect to silicon content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号