首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-temperature reactions during the solid-state synthesis of samples from the (1-x)Na0.5Bi0.5TiO3–xSrTiO3 system were investigated. Due to the number of chemically different elements, the processing of these ceramics is delicate and requires several firing steps under specific conditions to obtain phase-pure samples. Sintering in an air atmosphere resulted in a macroscopically inhomogeneous microstructure, which is a consequence of incomplete reaction between different secondary phases. However, prolongation of the sintering time aggregated the pores in the sample, while at a higher firing temperature the sample’s secondary phase melted. As a result, the nominal composition was altered, leading to the formation of the Na2Ti6O13 secondary phase. Sintering under an increased oxygen pressure of 1 MPa limited the evaporation of the secondary phase. This allowed the completion of the reaction, forming a homogeneous and dense sample. The study provides a set of experimental conditions for the successful preparation of ceramics from the investigated system.  相似文献   

2.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

3.
《Ceramics International》2016,42(8):9660-9666
Lead-free 0.99[(1−x)(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5)TiO3]–0.01Ta piezoelectric ceramics were prepared by a conventional solid-state reaction process. The ferroelectric properties, and strain behaviors were characterized. Increase of the (Bi0.5K0.5)TiO3 content induces a phase transition from coexistence of ferroelectric tetragonal and rhombohedral to a relaxor pseudocubic phase. Accordingly, the ferroelectric order is disrupted significantly with the increase of (Bi0.5K0.5)TiO3 content and the destabilization of the ferroelectric order is accompanied by an enhancement of the unipolar strain, which peaks at a value of 0.35% (corresponding to a large signal d33 of 438 pm/V) in samples with 20 mol% (Bi0.5K0.5)TiO3 content. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C suggested that the origin of the large strain is due to a reversible field-induced nonpolar pseudocubic-to-polar ferroelectric phase transformation.  相似文献   

4.
《Ceramics International》2015,41(6):7897-7902
The piezoelectric and dielectric properties of the (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 (x=0.12, 0.14, 0.18, 0.20 and 0.30) lead-free ceramics were investigated. Specimens were prepared by the conventional mixed oxide method and sintered at 1170 °C in air. Scanning electron microscopy indicated that increasing x from 0.12 to 0.30 causes a decrease in the grain size. The (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 ceramics shows a homogeneous microstructure and excellent dielectric and piezoelectric properties. Specimens with optimum composition showed a piezoelectric charge constant d33 of 166 pC/N, an electromechanical coupling factor kp of 0.5, a dielectric constant εr of 1591.32 at 1 kHz and generated power output of 37.49 nW/cm2.  相似文献   

5.
A systematic XRD investigation of poled and unpoled ceramics of the system (1 ? x) Bi0.5Na0.5TiO3x BaTiO3 (0  x  0.2) (BNBT) was performed. The variation of the lattice parameters confirms the existence of a morphotropic phase boundary at 0.06  x  0.08; however, significant differences in unit cell parameters between poled and unpoled states appear. Lattice distortions of the rhombohedral and tetragonal phases are significantly increased in poled samples. Dramatic changes in peak intensities of the pseudo-cubic (2 0 0) reflections between poled and unpoled samples reveal a strong enhancement of the tetragonal volume fraction in the poled state. Temperature-dependent XRD studies confirm a transition into a cubic high-temperature phase. This transition is rather smooth in the unpoled state. In poled samples, the tetragonal distortion and the tetragonal volume fraction display a different temperature variation and tetragonal regions seem to persist into the cubic phase field.  相似文献   

6.
7.
Phase transformation and electric properties of lead-free piezoceramics (Bi0.5Na0.5)1?xBaxTiO3 with x=0.05, 0.06, and 0.07(BNB5T, BNB6T and BNB7T) were investigated using dielectric, piezoelectric and ferroelectric measurements. Electric field induced strain measurement shows “W” shape bipolar strain characteristics for BNB5T with typical ferroelectric PE curve, while BNB6T and BNB7T, possessing pinch-off PE, exhibit “V” shape field-induced strain. All the BNBxT specimens exhibit relaxor characteristic, identified by the Debye Law. Dielectric properties measured at elevated temperatures with the frequency variation (10–500 kHz) reveal frequency dispersion below the Td point, but no dispersion between Td and Tm, which may be ascribed to an intermediate phase transition. By adding more Ba2+ ions, the region of intermediate phase, distinguished by frequency dependence dielectric constant, expands to lower temperature. Moreover, the ferroelectric properties measured at elevated temperature were carried out below and at the depolarization temperature to well investigate the existence of this phase. Much less εT profile dispersion were observed during the investigation of BNB6T and BNB7T, leading to possible existence of an intermediate phase in the investigated compositions. The results suggest that the linear field-induced-strain of (Bi0.5Na0.5)1?xBaxTiO3 are expected to be attributed to the intermediate phase.  相似文献   

8.
《Ceramics International》2016,42(11):12964-12970
Lead-free 0.99[(1−x) Bi0.5(Na0.80K0.20)0.5TiO3xBiFeO3]–0.01(K0.5Na0.5)NbO3 (BNKT20–100xBF–1KNN) piezoelectric ceramics were fabricated through conventional techniques. Results showed that changes in BF content of BNKT20–100xBF–1KNN induced transition from the ferroelectric phase to the ergodic relaxor phase. These changes also significantly disrupted long-range ferroelectric order, thereby correspondingly adjusting the ferroelectric-relaxor transition point TF-R to room temperature. A large strain of 0.39% at the electric-field of 80 kV/cm (corresponding to a large signal d33* of 488 pm/V) was obtained at x=0.06, which originated from the composition proximity to the ferroelectric-relaxor phase boundary. Moreover, the high-strain material exhibited exceptional fatigue resistance (up to 106 cycles) as a result of the reversible field-induced phase transition. The proposed material exhibits potential for novel ultra-large stroke and nonlinear actuators that require enhanced cycling reliability.  相似文献   

9.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

10.
《Ceramics International》2016,42(13):14886-14893
Lead–free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1–x(Mn0.5Sb0.5)xO3 (BNBT6.5–xMS, x=0.005, 0.010, 0.015, 0.020) were prepared by conventional solid state reaction sintering technique. All ceramics present a pure perovskite phase structure, indicating that (Mn, Sb) has completely diffused into the BNBT6.5 lattice in the studied components. The addition of (Mn, Sb) disrupted the ferroelectric long–range order and promoted the electric field induced strain response. At x=0.015, a large electric field–induced unipolar strain of 0.48% (at an applied electric field of 80 kV/cm) with normalized strain d33*(Smax/Emax) of 602 pm/V are achieved. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C were also studied, and the results suggest that the origin of the large strain is due to a reversible field–induced non–polar relaxor phase to polar ferroelectric phase transformation.  相似文献   

11.
《Ceramics International》2016,42(13):14557-14564
A series of NBT-KBT lead-free crystals with dimensions of Φ 35×10 mm were successfully grown by the TSSG method. The as-grown crystals possess rhombohedral perovskite structure at room temperature. The curves ε(T) for all crystals show two abnormal dielectric peaks. The depolarization temperatures Td derived from the first peak of curves tan δ(T) vary with the KBT content, which are 130, 150, 140, and 115 °C respectively, for (100−x)NBT−xKBT (x=5, 8, 12, 15) crystals, being well consistent with the Td obtained from the temperature dependence of kt. A notable thermal hysteresis, ΔT≈35 °C, for ferroelectric-antiferroelectric phase transition was also disclosed for 92NBT-8KBT crystal. The investigation of orientation dependence for electrical properties disclosed the dielectric parameters show weak anisotropy. The piezoelectric constants (d33) are 147, 175, 205, 238 pC/N and the values of kt are 38%, 52%, 52%, 54%, respectively for (100−x)NBT−xKBT (x=5, 8, 12, 15) crystals.  相似文献   

12.
《Ceramics International》2016,42(13):14355-14363
We investigated (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 (x=0, 0.14, 0.16, 0.18, 0.20, and 0.22) compositions of lead-free piezoelectric ceramics for potential energy harvester applications. Composition and sintering temperature of (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 were varied to extract the optimized processing temperature with each composition. We compared and analyzed sintering temperature-dependent surface morphologies and electrical properties. Maximum piezoelectric charge constant of 180 pC/N were obtained from the 0.8(Bi,Na)TiO3–0.2(Bi,K)TiO3composition at the sintering temperature of 1180 °C. Temperature dependent dielectric permittivity was measured to know the phase transition. We corresponded two different anomaly peaks, observed at 84 and 290 °C, as the rhombohedral-tetragonal and tetragonal-cubic phase transitions, respectively. Due to these phase transitions, different shapes of polarization-electric field loops (P-E loops) were measured and compared. Finally, output power of 42.39 nW/cm2 were obtained for the (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 lead free piezoelectric ceramics.  相似文献   

13.
The phase diagram of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 was completed and investigations on polarization and strain in this system were carried out. (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3-ceramics were prepared by conventional mixed oxide processing. The depolarization temperature (Td), the temperature of the rhombohedral–tetragonal phase transition (Tr–t) and the Curie temperature (Tm) were determined by measuring the temperature dependence of the relative permittivity. All solid solutions of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 show relaxor behavior (A-site relaxor). From XRD-measurements a broad maximum of the lattice parameter can be observed around x = 0.5 but no structural evidence for a morphotropic phase boundary was found. SEM-analysis revealed a decrease of the grain size for increasing SrTiO3-content. At room temperature a maximum of strain of about 0.29% was found at x = 0.25 which coincides with a transition from a ferroelectric to an antiferroelectric phase. The temperature dependence of the displacement indicates an additional contribution from a structural transition (rhombohedral–tetragonal), which would be of certain relevance for the existence of a morphotropic phase boundary.  相似文献   

14.
《Ceramics International》2017,43(10):7653-7659
Lead-free (1−x)(0.75Bi0.5Na0.5TiO3–0.25Bi0.5K0.5TiO3)–xBiAlO3 (BNT–BKT–100xBA, x=0–0.10) ceramics were prepared by two-step sintering method and their phase structure, micro morphology and electrical properties were systematically investigated. X-ray diffraction analysis indicates a pure perovskite phase for x≤0.06 as well as a structural evolution from a tetragonal toward a pseudocubic phase. Transmission electron microscopy study of the x=0.04 composition reveals the existence of antiferroelectric phase with a0a0c+ oxygen octahedron tilting which is in the form of nano-domains. Polarization-electric field and current-electric field hysteresis loops demonstrate that the increase of BA concentration destroys the ferroelectric order and strengthens antiferroelectric order. A much enhanced energy storage density of 1.15 J/cm3 and efficiency of 73.2% is achieved under 105 kV/cm at x=0.06. In addition, its energy storage property is found to depend weakly on temperature within the measurement range of 25–150 °C.  相似文献   

15.
《Ceramics International》2022,48(13):18452-18459
Bi0.5Na0.5TiO3 (BNT)-based dielectric ceramics have received a lot of attention due to the increased demand for pulse ceramic capacitors. However, comprehensive study on the relationship between their internal phase structure, dielectric characteristics, and ferroelectric properties is still lacking. The phase evolution and its impact on dielectric and ferroelectric properties of an important BNT-based solid solution, Bi0.5Na0.4K0.1TiO3-xSrTiO3 (x = 0, 0.1, 0.2, 0.3 and 0.4), were investigated systematically in this work using structural, dielectric, and ferroelectric characterization techniques. X-ray diffraction indicated the coexistence of rhombohedral and tetragonal phases. The frequency- and temperature-dielectric characterization was then used to derive the characteristic temperatures TB, Tm, Ts, and Td, and a phase diagram was developed. Furthermore, the temperature-dependent current against electric field curves and polarization versus electric field loops were used to derive the characteristic temperatures connected to high electric field features. This study not only explains the phase evolution of the Bi0.5Na0.4K0.1TiO3-xSrTiO3 solid solution, but it also correlates microscopic domains and polar nanoregions to macroscopic dielectric and ferroelectric properties.  相似文献   

16.
This work examines the relaxor behavior of lead-free ceramic (1 − x)Na0.5Bi0.5TiO3xCaTiO3 systems. A stable rhombohedral (R3c) phase is detected at room temperature for all compositions by XRD and Raman spectroscopy. Relaxor behavior was observed in the temperature range 300 K - 400 K for all materials. Ceramics exhibit normal ferroelectric properties at room temperature, and then they develop relaxor characteristics with increasing temperature showing the same dispersive properties. This work quantifies the relaxor phenomenon at low temperature. For instance, the maximum temperature of relaxor and the order of dispersion were determined at the strongest dispersion. Finally, the substitution by low CT concentration unaltered the relaxor behavior at low temperature.  相似文献   

17.
《Ceramics International》2023,49(6):9615-9621
Bi0.5Na0.5TiO3 (BNT) lead-free ceramics have been extensively studied due to their excellent dielectric, piezoelectric and ferroelectric properties. The phase structure and functionalities of BNT can be feasibly adjusted by doping/forming solid solutions with other elements/components. In this work, Bi(Mg2/3Nb1/3)O3 (BMN) was introduced into BNT by a conventional solid-state reaction to form a homogeneous solid solution of (1-x)(Bi0.5Na0.5)TiO3-xBi(Mg2/3Nb1/3)O3 (BNT-xBMN) with a perovskite structure. With the increase of BMN content, a phase transition from rhombohedral R3c to tetragonal P4bm has been confirmed by XRD, along with shifting the ferroelectric-paraelectric phase transition temperature to lower temperatures with broadening dielectric peaks. Furthermore, an optimized recoverable energy density of 1.405 J/cm3 was achieved for BNT-0.10BMN ceramics under a low applied electric field of 140 kV/cm, which is mainly attributed to the transformation from ferroelectric to ergodic relaxor phase.  相似文献   

18.
Structure, dielectric permittivity, strain, electric (E) polarization, and piezoelectric responses of (Bi1/2Na1/2)0.925Ba0.075(Ti1−xZrx)O3 (BNT7.5BT-100xZr; x = 0–0.04) ceramics were investigated as functions of poling E field and temperature. The BNT7.5BT ceramic reveals a phase transition from P4bm nanodomains to long-range-ordered P4mm domains. The Zr-doped BNT7.5BT ceramic reveals a reversible change of unit cell with dynamically fluctuating polar nanoregions, which are responsible for the large strain. The poled BNT7.5BT ceramic displays a depolarization temperature of Td = 90 °C, which correspond to a phase transition from ferroelectric to relaxor states. The Zr-doped BNT7.5BT ceramics have Burns temperatures (TB) in the region of 400–435 °C, below which polar nanoregions begin to develop. The Zr-doped BNT7.5BT ceramics display wide diffuse phase transitions, suggesting a transition from R + T to T phases. BNT7.5BT-2Zr ceramic shows a temperature dependent linear large strain of 0.482% at 150 °C and can be a potential candidate for lead-free actuator.  相似文献   

19.
(1-x)Na0.5 Bi0.5 TiO3-xNaNbO3系无铅压电陶瓷的机电性能   总被引:3,自引:1,他引:3  
李月明  陈文  徐庆  方斯琴  顾幸勇 《硅酸盐学报》2005,33(3):366-369,385
采用传统陶瓷的制备方法,制备了(1-x)Na0.5Bi0.5TiO3-xNaNbO3(r=0~0.08)压电陶瓷。X射线衍射分析表明:所研究的组成均能够形成纯钙钛矿(ABOx)型固溶体。不同频率下陶瓷材料的介电常数-温度曲线显示该体系材料具有典型的弛豫铁电体特征,且随着x的增加,其弛豫性特征愈明显。室温下陶瓷材料的饱和电滞回线表明:所研究组成均为铁电体.材料的剩余极化强度P1在x=0.02时具有最大值。检测了不同组成陶瓷的雎电性能,发现材料的压电常数d33和平面机电耦合系数Kp随着x值的增加先增加后降低,在x=0.02时.陶瓷的d33=88pC/N,Kp=0.1792,为所研究组成中的最大值.材料的介电常数εI3/ε0和介电损耗tanδ则随x值的增加而增加。  相似文献   

20.
《Ceramics International》2016,42(13):14635-14641
Thick and dense ceramic films of lead-free 0.94Na0.5Bi0.5TiO3-0.06 BaTiO3 (NBT-BT) composition were elaborated by aerosol deposition method (ADM) at room temperature. A powder of suitable grain size was elaborated by solid state reaction. Using this powder, two samples were elaborated by ADM respectively on glass and metallic substrates, in order to check for microstructure and electrical properties. This process allowed obtaining a thick film (3.2 µm) with dense microstructure. Measurement of electrical properties revealed a lossy dielectric behavior indicating interfacial phenomena at the electrode–film interface. The measurement of the ferroelectric hysteresis cycle does not show any characteristics of a ferroelectric behavior, but corresponds well to the one of a lossy non-linear dielectric. The absence of ferroelectricity is probably due to the low grain size of the obtained thick film (130 nm). Further experiments are in progress in order to try to obtain ferroelectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号