首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Mechanical and tribological properties of nanocomposites with silicon nitride matrix with addition of 1 and 3 wt.% of multilayered graphene (MLG) platelets were studied and compared to monolithic Si3N4. The wear behavior was observed by means of the ball-on-disk technique with a silicon nitride ball used as the tribological counterpart at temperatures 25 °C, 300 °C, 500 °C, and 700 °C in dry sliding. Addition of such amounts of MLG did not lower the coefficient of friction. Graphene platelets were integrated into the matrix very strongly and they did not participate in lubricating processes. The best performance at room temperature offers material with 3 wt.% graphene, which has the highest wear resistance. At medium temperatures (300 °C and 500 °C) coefficient of friction of monolithic Si3N4 and composite with 1%MLG reduced due to oxidation. Wear resistance at high temperatures significantly decreased, at 700 °C differences between the experimental materials disappeared and severe wear regime dominated in all cases.  相似文献   

2.
Si3N4 based composites with 7 wt.% of graphene nanoplatelets (GNPs) were prepared using different homogenization methods. Si3N4/GNPs powder mixtures were dispersed in isopropanol and homogenized by attritor milling, ball milling or planetary ball milling. The ball milling technique was also used for the homogenization of Si3N4/GNPs mixture in dry state. Fractography analysis was carried out in order to assess the individual homogenization treatment. Depending on the homogenization methods, the size of the processing flaws varied from 20 μm up to 400 μm. The agglomeration of the GNPs and the residual porosity were found as the most frequently observed types of the critical flaws. The planetary ball milling with previous ultrasonication of GNPs in isopropanol was found to be the most promising homogenization technique, resulting in the composites with the highest bending strength (average value is 740 MPa) and the lowest average size of the processing flaws (around 20 μm).  相似文献   

3.
《Ceramics International》2017,43(11):8334-8342
Extended lifetime of ceramic cutting plates is ever more desired. One way of approaching it entails sintering precursor materials with graphene-like nanoplatelets (GLPs) acting as solid lubricants. Therefore, Al2O3 and Si3N4 ceramic powders with addition of GLPs of grade 3 (fine) or grade 4 (coarse) were Spark Plasma Sintered. It is found that the 0.15 wt% GLPs addition of both grades allows to keep hardness practically at the same level as GLPs-free compacts (~16 GPa). Only larger GLPs additions (2 wt%) caused its evident decrease (down to 14−15 GPa). The ball-on-disc test revealed that only Al2O3+0.15 wt% GLPs(3) shows a 50% reduction in wear rate. The post mechanical test examination by SEM confirmed that Al2O3 compacts with small GLPs showed smooth wear track, as opposed to those having a Si3N4 matrix with large meandering cavities. TEM observations revealed that the wear damage caused by the ball was restricted to ~2 µm deep sub-surface areas, while, carbon is found to transfer from the GLPs agglomerates into tribo-film. The present experiments showed, that ceramic sinters with small addition of GLPs platelets could exhibit lower wear than GLPs-free ones and therefore show a potential for application as cutting plates.  相似文献   

4.
In this paper, the tribological behaviors of Ni–Cr alloy sliding against Si3N4 and WC–Co at 20 °C and 600 °C were investigated on a tribometer with a ball-on-disk configuration. The experimental results indicated that Ni–Cr alloy sliding against WC–Co exhibited higher wear resistance than that sliding against Si3N4. From the viewpoints of the interfacial interactions between metal and ceramic (chemical reaction, wetting, adhesion, transference), the wear mechanisms were elucidated. The tribological behaviors of Ni–Cr alloy/ceramic tribo-couples were well correlated with the interfacial characteristics, namely the reactive interface and the non-reactive interface. Ni–Cr alloy/Si3N4 tribo-couple showed severe adhesive wear as a result of the interfacial reaction between Ni and Si3N4, while the non-reactivity of Ni/WC interface is the most important factor corresponding to the moderate adhesive wear in Ni–Cr alloy sliding against WC–Co. Finally, the relations among the interfacial characteristics, wear behavior, and temperature were discussed. The results may provide some experimental evidences on the design and optimization of metal/ceramic tribo-couples.  相似文献   

5.
Mechanical and tribological properties of nanocomposites with silicon nitride matrix with addition of 1 and 3 wt% of various types of graphene platelets were studied. The wear behavior was observed by means of the ball-on-disk technique with a silicon nitride ball used as the tribological counterpart at room temperature in dry sliding. Coefficient of friction and specific wear rates were calculated and related to the damage mechanisms observed in the wear tracks. The measured properties were then assessed with respect to the type and volume fraction of the graphene additives. It is shown that addition of such amounts of carbon phases does not lower the coefficient of friction. Graphene platelets seem to be integrated into the matrix very strongly and they do not participate in lubricating processes. The best performance offers materials with 3 wt% of larger sized graphene, which have the highest wear resistance.  相似文献   

6.
Highly homogenous carbon nanotube (CNT)/silicon nitride (Si3N4) nanocomposites with high CNTs loadings, up to 22 vol.%, are developed through the in-situ synthesis of CNTs on the ceramic powders, and further densification using the spark plasma sintering technique. The CNTs dispersion degree, the composite density, and their properties, especially the tribological ones, are evaluated and compared with those obtained for nanocomposites processed by the ex-situ method based on the mixing of nanotubes and ceramic powders in a solvent media. Fully dense in-situ 12 vol.% CNTs nanocomposites are 87% and 65% more wear resistant than monolithic Si3N4 materials and ex-situ nanocomposites, respectively, in the latter case due to the higher nanotubes dispersion and better mechanical properties attained by the in-situ process. These new in-situ CNTs nanocomposites present multifunctionality and are promising for emerging applications, especially for gasoline direct injection systems.  相似文献   

7.
《Ceramics International》2017,43(18):16248-16257
Si3N4-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si3N4-based ceramics were investigated. The frictional characteristics of the microwave sintered Si3N4-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si3N4 ceramics, while it enhanced the aspect-ratio of β-Si3N4 which promoted the mechanical properties. The Si3N4-based composite ceramics reinforced by 15 wt% (W,Ti)C sintered at 1600 °C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 ± 0.21%, 15.92 ± 0.09 GPa and 7.01 ± 0.14 MPa m1/2, respectively. Compared to the monolithic Si3N4 ceramics by microwave sintering, the sintering temperature decreased 100 °C,the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si3N4/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15 wt%.  相似文献   

8.
Silicon nitride materials containing 1–5 wt% of hexagonal boron nitride (micro-sized or nano-sized) were prepared by hot-isostatic pressing at 1700 °C for 3 h. Effect of hBN content on microstructure, mechanical and tribological properties has been investigated. As expected, the increase of hBN content resulted in a sharp decrease of hardness, elastic modulus and bending strength of Si3N4/BN composites. In addition, the fracture toughness of Si3N4/micro BN composites was enhanced comparing to monolithic Si3N4 because of toughening mechanisms in the form of crack deflection, crack branching and pullout of large BN platelets. The friction coefficient was not influenced by BN addition to Si3N4/BN ceramics. An improvement of wear resistance (one order of magnitude) was observed when the micro hBN powder was added to Si3N4 matrix. Mechanical wear (micro-failure) and humidity-driven tribochemical reaction were found as main wear mechanisms in all studied materials.  相似文献   

9.
《Ceramics International》2017,43(15):12221-12231
Carbon/ceramic composites are promising candidates as electromagnetic interference (EMI) shielding materials used at various harsh environments. The aim of present work is to prepare and investigate two kinds of composite ceramics reinforced with carbon nanowires (CNWs) and nanowires-nanotubes (CNWs-CNTs) hybrid, respectively. Results indicate that CNWs is highly curved and multi-defected, and CNWs-CNTs hybrid shows the best crystal structure at an optimal catalyst concentration of 5 wt%. When CNWs accounts for 5.15 wt%, the total shielding effectiveness (SE) of CNWs/Si3N4 reaches 25.0 dB with absorbed SE of 21.3 dB, meaning that 99.7% incident signal can be blocked, while it reaches 25.4 dB for CNWs-CNTs/Si3N4 as the carbon loading only increasing to 3.91 wt%. By contrast, CNWs/Si3N4 exhibits better electromagnetic attenuation capability with stronger absorption, mainly due to the unique microstructure of CNWs. Both of two composite ceramics have great potential to be designed as structural and multi-functional materials.  相似文献   

10.
《Ceramics International》2017,43(10):7816-7826
Gradient cermet composites possessing high surface hardness, flexural strength and interface bonding strength were fabricated using vacuum hot-pressing sintering. Ball-on-disk tests were performed to investigate the tribological properties of the gradient cermet composites against 440 C stainless steel, Al2O3 and Si3N4 balls at different sliding speed and load in comparison with traditional Ti(C,N) cermets. The tribological behavior was characterized in terms of friction coefficient and wear rate. The results showed that friction coefficient was significantly dependent on the sliding speed and load when sliding against Al2O3 and Si3N4. However, there was no obvious relation between them during sliding against 440 C stainless steel due to the formation of metal adhesive layer. Gradient cermet composites exhibited a higher friction coefficient but lower wear rate than traditional Ti(C,N) cermets. The main wear mechanism of gradient cermet composites was adhesion wear during sliding against 440 C stainless steel, while abrasion wear was the predominant mechanism during sliding against Al2O3 and Si3N4. It was expected that gradient cermet composites would be excellent candidates for cutting tool materials.  相似文献   

11.
Barium titanate/silicon nitride (BaTiO3/xSi3N4) powder (when x = 0, 0.1, 0.5, 1 and 3 wt%) were prepared by solid-state mixed-oxide method and sintered at 1400 °C for 2 h. X-ray diffraction result suggested that tetragonality (c/a) of the BaTiO3/xSi3N4 ceramics increased with increasing content of Si3N4. Density and grain size of BaTiO3/xSi3N4 ceramic were found to increase for small addition (i.e. 0.1 and 0.5 wt%) of Si3N4 mainly due to the presence of liquid phase during sintering. BaTiO3 ceramics containing such amount of Si3N4 also showed improved dielectric and ferroelectric properties.  相似文献   

12.
Silicon nitride + 1 wt% graphene platelet composites were prepared using various graphene platelets (GPLs) as filler. The influence of the addition of GPLs on the microstructure development and on the fracture toughness of Si3N4 + GPLs composites was investigated. The GPLs with thickness from 5 nm to 50 nm are relatively homogeneously distributed in the matrix of all composites, however overlapping/bundle formation of GPLs was found, containing 2–4 platelets as well. The single GPLs and overlapped GPLs are located at the boundaries of Si3N4, and hinder the grain growth and change the shape of the grains. The fracture toughness was significantly higher for all composites in comparison to the monolithic Si3N4 with the highest value of 9.9 MPa m0.5 for the composite containing the GPLs with smallest dimension. The main toughening mechanisms originated from the presence of graphene platelets, and responsible for the increase in the fracture toughness values are crack deflection, crack branching and crack bridging.  相似文献   

13.
Silicon nitride based nanocomposites have been prepared with different amount (1 and 3 wt%) of multilayer graphene (MLG) as well as exfoliated graphite nanoplatelets (xGnP) and nano graphene platelets (Angstron) in comparison. The microstructure and mechanical properties of the graphene reinforced silicon nitride based composite materials have been investigated. Homogeneous distribution of the MLG additives have been observed on the fracture surface of the sintered material. The scanning electron microscopy examinations showed that graphene platelets are inducing porosity in matrix. The bending strength and elastic modulus of MLG/Si3N4 composites showed enhanced values compared to the other graphene added silicon nitride ceramic composites. These observations may be explained by the different type and quality of the starting materials and by the dispersion grade of graphene platelets having direct impact to the resulting density of the sintered samples.  相似文献   

14.
Novel highly electrically conducting nanocomposites consisting of a silicon nitride (Si3N4) ceramic matrix containing up to 13.6 vol.% of nitrogen-doped multi-walled carbon nanotubes (CNx) were fabricated. As-synthesized CNx were treated with hydrogen peroxide in order to efficiently detach/isolate the nanotubes from bundles, then they were mixed with the ceramic powders and fully densified using the spark plasma sintering (SPS) technique. Composites containing 13.6 vol.% CNx reached an electrical conductivity of 2174 S m−1 that is the highest value reported hitherto for carbon nanotubes/Si3N4 nanocomposites. The nitrogen doping also favored a strong mechanical interlocking between the nanotubes and the Si3N4 matrix; when compared to the undoped carbon nanotubes. These novel nanocomposites could be used in devices associated to power generation or telecommunications.  相似文献   

15.
Hot isostatically pressed monolithic and multilayer graphene (MLG) reinforced silicon nitride nanocomposites have been investigated by ball-on-disc tests under variable loading conditions. Tests were carried out at room temperature with three different normal loads (10, 40 and 80 N), and six sliding speeds (10, 20, 50, 100, 150 and 200 mm/s) without lubrication using commercial silicon carbide ball counterparts for 54 tribosystems. The aim of the research work was to construct 2D wear transition and 3D wear rate maps of the investigated ceramic composites. The 3D maps visualizing the specific wear rate and the dimensionless wear coefficient as a function of normal load and sliding speed have been completed with morphological analysis of wear tracks and identification of the dominant wear mechanisms. The presented ceramic wear maps provide useful aid for predicting the wear performance of the investigated nanocomposites under various loading conditions.  相似文献   

16.
30 vol.% 2 and 30 μm diamond dispersed Si3N4 matrix composites were prepared by pulsed electric current sintering (PECS) for 4 min at 100 MPa in the 1550–1750 °C range. The densification behaviour, microstructure, Si3N4 phase transformation and stiffness of the composites were assessed, as well as the thermal stability of the dispersed diamond phase. Monolithic Si3N4 with 4 wt% Al2O3 and 5 wt% Y2O3 sintering additives was fully densified at 1550 °C for 4 min and 60 MPa. The densification and α to β-Si3N4 transformation were substantially suppressed upon adding 30 vol.% diamond particles. Diamond graphitisation in the Si3N4 matrix was closely correlated to the sintering temperature and grit size. The dispersed coarse grained diamonds significantly improved the fracture toughness of the diamond composite, whereas the Vickers hardness was comparable to that of the Si3N4 matrix ceramic. The Elastic modulus measurements were found to be an excellent tool to assess diamond graphitisation in a Si3N4 matrix.  相似文献   

17.
《Ceramics International》2017,43(13):9699-9708
ZrB2–SiC composite ceramics were doped with 0, 1, 3 and 5 wt% Si3N4 plus 1.6 wt% carbon (pyrolized phenolic resin) as sintering aids and fabricated by hot pressing process under a relatively low pressure of 10 MPa at 1900 °C for 2 h. For a comparative study, similar ceramic compositions were also prepared by pressureless sintering route in the same processing conditions, with no applied external pressure. The effect of silicon nitride dopant on the microstructural evolution and sintering process of such ceramic composites was investigated by a fractographical approach as well as a thermodynamical analysis. The relative density increased by the addition of Si3N4 in hot pressed samples as a fully dense composite was achieved by adding 5 wt% silicon nitride. A reverse trend was observed in pressureless sintered composites and the relative density values decreased by further addition of Si3N4, due to the formation of gaseous products which resulted in the entrapment of more porosities in the final structure. The formation of ZrC phases in pressureless sintered samples and layered BN structures in hot pressed ceramics was detected by HRXRD method and discussed by fractographical SEM-EDS as well as thermodynamical analyses.  相似文献   

18.
Cubic boron nitride (cBN) coatings were deposited on silicon nitride (Si3N4) cutting inserts through conductive boron-doped diamond (BDD) buffer layers in an electron cyclotron resonance microwave plasma chemical vapor deposition (ECR MPCVD) system. The adhesion and crystallinity of cBN coatings were systematically characterized, and the influence of doping level of BDD on the phase composition and microstructure of the cBN coatings were studied. The nano-indentation tests showed that the hardness and elastic modulus of the obtained cBN coatings were 78 GPa and 732 GPa, respectively. The tribological properties of the cBN coatings were evaluated by using a ball-on-disc tribometer with Si3N4 as the counterpart. The coefficient of the friction and the wear rate of the cBN coatings were estimated to be about 0.17 and 4.1 × 10 7 mm3/N m, respectively, which are remarkably lower than those of titanium aluminum nitride (TiAlN) coatings widely used in machining ferrous metal. The results suggest that cBN/BDD coated Si3N4 inserts may have great potentials for advanced materials machining.  相似文献   

19.
We present here the single-source-precursor synthesis of Fe3Si and Fe5Si3-containing SiOC ceramic nanocomposites and investigation of their magnetic properties. The materials were prepared upon chemical modification of a hydroxy- and ethoxy-substituted polymethylsilsesquioxane with iron (III) acetylacetonate (Fe(acac)3) in different amounts (5, 15, 30 and 50 wt%), followed by cross-linking at 180 °C and pyrolysis in argon at temperatures ranging from 1000 °C to 1500 °C. The polymer-to-ceramic transformation of the iron-modified polysilsesquioxane and the evolution at high temperatures of the synthesized SiFeOC-based nanocomposite were studied by means of thermogravimetric analysis (TGA) coupled with evolved gas analysis (EGA) as well as X-ray diffraction (XRD). Upon pyrolysis at 1100 °C, the non-modified polysilsesquioxane converts into an amorphous SiOC ceramic; whereas the iron-modified precursors lead to Fe3Si/SiOC nanocomposites. Annealing of Fe3Si/SiOC at temperatures exceeding 1300 °C induced the crystallization of Fe5Si3 and β-SiC. The crystallization of the different iron-containing phases at different temperatures is considered to be a consequence of the in situ generation of a Fe–C–Si alloy within the materials during pyrolysis. Depending on the Fe and Si content in the alloy, either Fe3Si and graphitic carbon (at 1000–1200 °C) or Fe5Si3 and β-SiC (at T > 1300 °C) crystallize. All SiFeOC-based ceramic samples were found to exhibit soft magnetic properties. Magnetization versus applied field measurements of the samples show a saturation magnetization up to 26.0 emu/g, depending on the Fe content within the SiFeOC-based samples as well as on the crystalline iron silicide phases formed during pyrolysis.  相似文献   

20.
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号