首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
InGaO3(ZnO)m (m = 1, 2, 3, 4, and 5) ceramics are a series of n-type oxide thermoelectric materials with layered structures and low thermal conductivities. Herein, InGaO3(ZnO)m (m = 1, 2, 3, 4, and 5) ceramics were fabricated by spark plasma sintering (SPS). Two different trends in the thermoelectric properties of the InGaO3(ZnO)m (m = 1, 2, 3, 4, and 5) ceramics were observed depending on the odevity of the m value. The InGaO3(ZnO) sample exhibited a relatively high electrical conductivity and was therefore selected for vacuum annealing to further improve the electrical transport performance. Oxygen vacancy defects were introduced to the matrix during the annealing procedure, which improved the thermoelectric performance. A maximum ZT of 0.45 was obtained at 973 K for the InGaO3(ZnO) sample with a 96 h vacuum annealing treatment, which is 30 times higher than that of the pristine sample.  相似文献   

2.
《Ceramics International》2017,43(7):5557-5563
La0.1Dy0.1SrxTiO3 (x=0.80, 0.78, 0.75, 0.70) powders were synthesized via a sol-gel method, followed by sintering at 1550 °C in a reducing atmosphere of 5 vol% hydrogen in nitrogen. The microstructure and thermoelectric properties of the Sr-deficient La and Dy co-doped SrTiO3 were investigated. The result of XRD revealed that La0.1Dy0.1SrxTiO3 consisted of SrTiO3 with a cubic crystal structure as the main phase and of a small amount of Dy2Ti2O7 as the second phase. All the Sr-deficient samples exhibited a step-like microstructure. As the nominal Sr deficient content increased, the electrical conductivity of the Sr-deficient La0.1Dy0.1SrxTiO3 ceramics enhanced due to the increasing Sr and oxygen vacancies, the absolute value of the Seebeck coefficient increased a little, and the thermal conductivity decreased to ~3.0 W m−1 K−1, leading to a high ZT value of 0.19 for La0.1Dy0.1Sr0.75TiO3 at 500 °C.  相似文献   

3.
Ga2O3(ZnO)m (m = integer) homologous compounds are naturally occurring nanostructured materials. Their intrinsically low thermal conductivity makes them attractive for thermoelectric applications. High density Ga2O3(ZnO)m (m = 9, 11, 13, and 15) single phase ceramics were prepared by solid-state reaction. Nano-sized, twin-like V-shaped boundaries parallel to b-axis (apex angle ∼ 60°) were observed for all compositions. Atomic resolution Z-contrast imaging and EDS analysis for m = 15 showed segregation of Ga ions at the interface of V-shaped twin boundaries. Thermal and charge transport properties depend on the value of m. Compositions with m = 9 exhibited very low lattice thermal conductivity of 2 to 1.5 W/m.K at 300 K–900 K; compositions with m=15 showed improved power factor of 140 μW/m. K2 at 900 K leading to a thermoelectric figure of merit (ZT value) of 0.055. This study explores the structural variants and routes to improve the thermoelectric properties of these materials  相似文献   

4.
《Ceramics International》2016,42(15):16644-16649
Ti-doped Sr0.9La0.1TiO3 ceramics with high density were successfully prepared in argon atmosphere by conventional solid state reaction. The influences of titanium doping content on the microstructure and thermoelectric properties were investigated. The results showed that titanium was oxidized during the calcination procedure. TiO2 phase survived and coexisted with Sr0.9La0.1TiO3 phase in the sintered ceramics. The Seebeck coefficients were increased from −163 to −259 μV/K as the temperature increased from 350 K to 1073 K. The thermal conductivity can be significantly reduced by doping Ti. Thermoelectric figure of merit (ZT) first decreased and then increased with increasing Ti doping content. Ceramics showed the best thermoelectric properties when Ti doping amount was 5 wt%, the maximum PF was 7.13 μW/K2/cm, and ZT value was 0.144 at 1073 K.  相似文献   

5.
We investigate the effects of microstructure evolution on transport properties of nickel-doped ZnO for thermoelectric waste heat recovery at high temperatures. A 3 at.% supersaturated Ni-alloyed ZnO solid solution was prepared by sintering at 1400 °C followed by controlled nucleation and growth of sub-micrometer size NiO-precipitates by aging at 750, 800, and 900 °C for different durations. Minimum thermal conductivity as low as 8.0 W m−1 K−1 at 700 °C is obtained for samples aged at 750 °C for 16 h due to precipitates with high number density of 1.3·1020 m−3, which initiate phonon scattering. In turn, as-quenched samples exhibit the highest electrical conductivity, ca. 17.9 S cm−1 at 700 °C. Further nucleation and growth of precipitates taking place for longer annealing durations reduce electrical conductivity and increase Seebeck coefficients, which is associated with dilution of the ZnO-matrix from Ni-atoms. This study provides us with guidelines for optimization of thermoelectric Ni-doped ZnO.  相似文献   

6.
《Ceramics International》2022,48(10):13598-13603
Al-doped ZnO (AZO) has emerged as a potential high-temperature thermoelectric material with an appropriate Seebeck coefficient and high thermal stability, and hence is considered as a promising material for power generation applications. Herein, we report the fabrication of AZO/SrTiO3 composites with improved thermoelectric performance. The densification, microstructure, and thermoelectric properties of the AZO/SrTiO3 composites were investigated. The significant increase in the relative density of AZO from 89.1 to 98.0% after the addition of SrTiO3 indicates that SrTiO3 promoted the densification of the composites. Furthermore, the electrical conductivity of AZO increased after the addition of SrTiO3, which can mainly be attributed to its enhanced relative density. The AZO/SrTiO3 composite with 2.0 wt% SrTiO3 showed the highest power factor at 1000 K because of its highest electrical conductivity. In addition, the composite showed the highest ZT value, which was 1.8 times higher than that of pure AZO.  相似文献   

7.
The effects of Fe2O3 on phase evolution, density, microstructural development, and mechanical properties of mullite ceramics from kaolin and alumina were systematically studied. X-ray diffraction results suggested that the ceramics consisted of mullite, sillimanite, and corundum, in the sintering range of 1450°C–1580°C. However, as the sintering was raised to 1580°C, mullite is the main phase with a content of 94%, and the corundum phase content is 5.9%. Simultaneously, high-temperature sintering had a positive effect on the densification of the mullite ceramics, where both the bulk density and flexural strength could be optimized by adjusting the content of Fe2O3. It was found that 6 wt% Fe2O3 was optimal for the formation of rod-shaped mullite after sintering at 1550°C for 3 h. The sample's maximum bulk density was 2.84 g/cm3, with a flexural strength of 112 MPa. Meanwhile, rod-shaped mullite grains with an aspect ratio of ~9 were formed. As a result, a dense network structure was developed, thus leading to mullite ceramics with excellent mechanical properties. The effect of Fe2O3 on the properties might be attributed to the fact that Al3+ ions in the [AlO6] octahedron were replaced by Fe3+ ions, resulting in lattice distortion.  相似文献   

8.
《Ceramics International》2016,42(6):7315-7327
Single-phase Ca3Co4O9 with a high porosity, having a ZT of 0.09 at 627 °C, was successfully prepared by a simple solid-state reaction using fine powders of CaCO3 and Co3O4 after a calcination at 760 °C for 12 hours. It was excellent either for the preparation of the starting powder for the processing of the Ca3Co4O9 ceramics or for direct processing. The influence of already-reported processing methods (classic sintering, hot pressing, free-edge spark-plasma sintering (SPS) of a sintered pellet) and new methods, such as free-edge SPS of a pellet from just-compacted powder, cold pressing of a sintered pellet without post annealing, and free-edge cold pressing of a sintered pellet with post-annealing, on the preparation of Ca3Co4O9 ceramics was studied. The results showed how the density, the grain morphology and the microstructural anisotropy can all influence the thermoelectric characteristics of Ca3Co4O9 ceramics measured in directions parallel and perpendicular to the applied pressure. While the fully dense (99%) and perfectly textured ceramics prepared by the free-edge SPS of a pellet from just-compacted powder had a ZT of 0.17, the highest ZT of 0.31 was obtained for the free-edge cold-pressed and annealed ceramics with modest texturing and low density (65%), having a very low κ of 0.47 W/mK. The results also showed that thin and irregular-shaped plate-like grains with sharp edges are preferred, while their thickening accompanied by rounding of their shape resulted in a reduced thermoelectric performance. The study revealed both the possibilities and the limitations for enhancing the TE characteristics of Ca3Co4O9 ceramics just through microstructure optimisation.  相似文献   

9.
In this work, we investigated the influence of Al doping on the structure of the (ZnO)5In2O3 homologous phase and the thermoelectric characteristics of (ZnO)5(In1?xAlx)2O3 ceramics for x=0, 0.01, 0.03, 0.05, 0.1, and 0.2, prepared using a classic ceramic procedure and sintering at 1500°C for 2 hours. The Al substituted for In on both the primary sites in the Zn5(In1?xAlx)2O8 homologous phase, the octahedral sites in the basal‐plane inversion boundaries and the trigonal bi‐pyramidal sites in the zig‐zag inversion boundaries, which resulted in a uniformly increased shrinkage of the unit cell with the additions of Al. The a and c parameters were reduced for x=0.2 by a maximum 0.8%. All the samples had similar microstructures, so the differences in the TE characteristics mainly resulted from the effects of the substitution of Al for In, decreasing the charge‐carrier concentration and affecting their mobility. Slightly improved TE characteristics were only observed for Al additions with x=0.01‐0.05, while larger additions of Al only resulted in a reduced electrical conductivity and decreased ZT values in comparison to the un‐doped composition.  相似文献   

10.
The influence of Ca-doping on the microstructure development and electrical characteristics was studied in the novel, ZnO-Cr2O3-based, varistor ceramics with the nominal composition (99.47-x) mol% ZnO + 0.1 mol% Cr2O3 + 0.33 mol% Co3O4 + 0.1 mol% La2O3 + x mol% CaCO3, with x ranging from 0 to 6, sintered at 1200 °C. The results showed that, within the limits of the solid solubility of CaO in ZnO, the addition of CaO greatly enhanced the diffusion processes and hence the grain growth, thus broaden the range of breakdown voltages. Moreover, the Ca-doping simultaneously increases the height of the electrostatic Schottky barrier, resulting in a higher nonlinear coefficient of 40 and a lower leakage current of 2.8 μA/cm2. The results are important for the potential application of these novel ZnO-Cr2O3-based varistors, having different nominal voltages and yet suitable dimensions, in overvoltage protection across a broad range of voltages.  相似文献   

11.
In a search for new thermoelectric materials, indium oxide (In2O3) was selected as a candidate for high-temperature thermoelectric oxide materials due to its intrinsically low thermal conductivity (<2 W/mK) and ZT values around 0.05. However, low electrical conductivity is a factor limiting the thermoelectric performance of this oxide, and was addressed in this study by Mo doping. It was found that Mo is soluble in In2O3 but forms secondary phases at a fraction near x = 0.06 and higher. Mo was found to be unsuitable for heavy n-type doping necessary to improve the thermoelectric performance of the oxide to the desired level (ZT = 1). However, the experimental data enabled us to analyze the electrical conductivity behavior and the Seebeck coefficient of doped In2O3 with different carrier concentrations, predicting a theoretically achievable maximum power factor value of 1.77 × 10?3 W/mK2 at an optimum carrier concentration. This estimation predicts the highest ZT value of 0.75 at 1073 K, assuming the lattice thermal conductivity value remaining at an amorphous level.  相似文献   

12.
LaCo1−xNixO3 (0 ≤ x ≤ 0.2) ceramics were prepared by solid state reaction and their thermoelectric properties were investigated from room temperature (RT) to 400 °C. In the range from RT to 180 °C, LaCoO3 showed a large negative Seebeck coefficient, but it changed to a positive value above 180 °C. However, the Seebeck coefficient became positive in the whole investigated temperature span due to Ni substitution for Co even for a tiny amount, but its absolute value decreased significantly with increasing Ni content. The LaCo0.9Ni0.1O3 composition showed an enhanced power factor with a maximum value of 1.41 × 10−4 W m−1 K−2 at room temperature, which is about 3.5 times higher than that of un-doped LaCoO3. Because the power factor decreased and the thermal conductivity increased apparently with temperature, the ZT values were not increased at elevated temperatures, in spite of a relatively large ZT value of 0.031 at a low temperature (50 °C) obtained in the composition LaCo0.9Ni0.1O3.  相似文献   

13.
《Ceramics International》2023,49(3):4707-4712
Bi2Sr2Co2Oy is a thermoelectric material with low thermal conductivity. The Bi2Sr2Co2Oy/Si80Ge20 composite samples were prepared by solid phase sintering at high temperature to investigate the effects of Si80Ge20 alloys as the second phase on the microstructure and thermoelectric properties of the fabricated composites. An appropriate amount of the dispersed Si80Ge20 in the Bi2Sr2Co2Oy matrix can reduce the resistivity of the composite successfully. In particular, the increase in phonon scattering caused by the second phase leads to a significant decrease in thermal conductivity, which improves the thermoelectric properties of the material significantly. At 923 K, the thermal conductivity of the Bi2Sr2Co2Oy + 0.2 wt% Si80Ge20 sample achieves an ultralow value of 0.58 W/K·m. Its corresponding optimal dimensionless thermoelectric figure of merit value is 0.36, which is 56% higher than that of the pure Bi2Sr2Co2Oy sample.  相似文献   

14.
In the present study, Bi2Sr2-xKxCo2Oy (x = 0.0, 0.050, 0.075, 0.100, and 0.15) ceramic precursors have been produced using the classical ceramic route, followed by texturing through the laser floating zone technique. XRD results show that the thermoelectric phase is the major one in all cases. Moreover, K-substitution decreases the secondary phases content, when compared to the undoped sample. SEM observations indicate that grain orientation is significantly enhanced when K-content is increased. K-doping decreases electrical resistivity from 32 10−5 Ω m (in undoped samples) to 20–22 10−5 Ω m at 300 K, while increasing Seebeck coefficient from 55 μV/K to 100–117 μV/K at 300 K. On the other hand, thermal conductivity is slightly lower in undoped samples (0.93 W/K m, compared to 1.10–1.28 W/K m for doped ones at 300 K), due to their lower electrical conductivity. Finally, ZT values are higher when the K-content increases up to x = 0.10, reaching 0.029 at around 400 K, and slightly decreasing for higher doping levels.  相似文献   

15.
In this study, Fe2O3.Al2O3/polyethylene composites were prepared using a two‐step process. In the first step, PE is synthesized using titanium based metallocene catalyst system. While the synthesized PE was subsequently purified, hydrated alumina filled PE (MHFP) composites was formed by the hydrolysis of methylaluminoxane (MAO). In the second step, Fe2O3.Al2O3/PE was prepared via thermal decomposition of ferric formate in a high temperature solution of MHFP composite. The structure, morphology, and thermal properties of the composites were characterized using the XRD, FTIR, SEM‐EDX, TGA, and DSC analytical techniques. Results showed that the incorporation of a suitable amount of Fe2O3.Al2O3 into the composites enhances the thermal stability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
《Ceramics International》2020,46(11):18667-18674
Low temperature co-fired ceramics (LTCCs) technology plays an important role in modern wireless communication. Zn3-xCoxB2O6 (x = 0–0.25) low temperature fired ceramics were synthesized via traditional solid-state reaction method. Influences of Co2+ substitution on crystal phase composition, grain size, grain morphology, microwave dielectric properties, bond energy, and bond valence were investigated in detail. X-ray diffraction analysis indicated that the major phase of the ceramics was monoclinic Zn3(BO3)2. Solid solution was formed with Co2+ substituted for Zn2+ because no individual phase that contained Co was observed. An increase in the amount of Co2+ substitution changed average grain sizes, and regrowth of grains were observed with Co2+ substitution. Appropriate amount of Co2+ substitution improved densification. With changes in Co2+ substitution, bond energy of major phase and average bond valence of B–O were positively correlated to temperature coefficient of resonant frequency. The Zn2.927Co0.075B2O6 ceramic sintered at 875 °C for 4 h exhibited excellent microwave properties with εr = 6.79, Q × f = 140,402 GHz, and τf = −87.42 ppm/°C. This ceramic is regarded as candidate for LTCC applications.  相似文献   

17.
Ti(C,N)-WC-Mo2C-TaC-Co-Ni cermets with various content of La2O3 were prepared by gas-pressure sintering at 1450 °C. The effects of ultrafine La2O3 additions (0, 0.05, 0.1 and 0.2 wt%) on the microstructure, mechanical properties, wear resistance and cutting performance of cermets were explored. In the microstructure of cermets, the La2O3 particles and dissolved La element in binder phases were observed, which could inhibit the dissolution-precipitation process of ceramics phases during liquid-sintering. Furthermore, the La2O3 could absorb and react with the impurity Al element with low melting point from raw powders, avoiding the appearance of liquid phase at the low temperature and partial overheating during sintering process. These mechanisms could inhibit the abnormal growth of Ti(C,N) core-(Ti,W,Mo,Ta)(C,N) rim structures effectively, leading to the thinning of brittle rim phases and coarsening of wear-proof Ti(C,N) particles. The decrease of proportion of brittle rim phase and ultrafine Ti(C,N) particles promoted the fracture toughness. The increase of proportion and grain size of Ti(C,N) improved the hardness, wear resistance and cutting performance significantly. However, the excessive addition of La2O3 would result in the agglomeration of La2O3, causing the sharp decline of mechanical properties and cutting performance. The cermet with 0.1 wt% La2O3 addition possessed the optimal mechanical properties with Vickers hardness, transverse rupture strength and fracture toughness of 1710 (HV30) Kgf/mm2, 2480 MPa and 11.7 MPa m1/2, respectively.  相似文献   

18.
The synthesis and transport properties of n-type thermoelectric oxide (ZnO)mIn2O3 (ZmIO) ceramics prepared by conventional solid-state reaction method have been reported. It is found that the transport properties of ZmIO ceramics are very sensitive to the post-annealing temperature as well as the zinc content m. The resistivity of Z5IO annealed at 1400 °C decreases by more than 2 orders of magnitude in comparison with that of Z5IO annealed at 1200 °C, while the resistivities of Z6IO compounds annealed at 1250 and 1350 °C are more than 3 orders of magnitude larger than that of Z6IO annealed at 1300 °C. All the ZmIO compounds annealed at 1300 °C show electron-type conduction with a lowest resistivity at m = 6. It is suggested that the oxygen defects or vacancies in the InO2 layers play a major role on the carrier scattering mechanism, and the observed temperature-dependent resistivity for Z5IO and Z6IO compounds can be satisfactorily described by the variable-range hopping conduction. Furthermore, it is found that the values of Seebeck coefficient for ZmIO are also very sensitive to the zinc content m. The dimensionless figure of merit of 0.0045 at 300 K for m = 6 has been obtained.  相似文献   

19.
In this study, the effects of the Mg2+ ions replaced by Ca2+ ions on the microwave dielectric properties of newly developed MgZrTa2O8 were investigated. Mg1-xCaxZrTa2O8 (x = 0–1.0) ceramics were prepared via a solid-state reaction method. Calcination of the mixed powders was performed at 1200 °C and sintering of the powder compacts was accomplished at temperatures from 1200 to 1550 °C. The substitution of Ca2+ significantly inhibited the densification of Mg1-xCaxZrTa2O8, led to the expansion of the unit cells, and triggered the formation of a second phase, CaTa2O6. The porosity-corrected relative permittivity increased almost linearly with the x value because of the replacement of the less polarizable Mg2+ ions by the more polarizable Ca2+ ions. The variation in the Q × f values followed a similar trend as that of the sintered density, and the change trend in the τf values was in accordance with that of relative permittivity. The best composition appeared to be Mg0.9Ca0.1ZrTa2O8, which showed excellent microwave dielectric properties of εr = 22.5, Q × f = 231,951 GHz, and τf = −32.9 ppm/°C. The Q × f value obtained is the highest among the wolframite dielectric ceramics reported in literature.  相似文献   

20.
《Ceramics International》2021,47(2):2255-2260
This study firstly developed Hf1-xVxB2 (x = 0, 0.01, 0.02, 0.05) powders, which were derived from borothermal reduction of HfO2 and V2O5 with boron. The results revealed that significantly refined Hf1-xVxB2 powders (0.51 μm) could be obtained by solid solution of VB2, and x ≥ 0.05 was a premise. However, as the content of V-substitution for Hf increased, Hf1-xVxB2 ceramics sintered by spark plasma sintering at 2000 °C only displayed a slight densification improvement, which was attributed to the grain coarsening effect induced by the solid solution of VB2. By incorporating 20 vol% SiC, fully dense Hf1-xVxB2-SiC ceramics were successfully fabricated using the same sintering parameters. Compared with HfB2-SiC ceramics, Hf0.95V0.05B2-20 vol% SiC ceramics exhibited an elevated and comparable value of Vickers hardness (23.64 GPa), but lower fracture toughness (4.09 MPa m1/2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号