首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yb3+/Er3+/Tm3+ doped transparent glass ceramic containing orthorhombic YF3 nanoparticles was successfully synthesized by a melt-quenching method. After glass crystallization, tremendously enhanced (about 5000 times) upconversion luminescence, obvious Start-splitting of emission bands as well as long upconversion lifetimes of Er3+/Tm3+ confirmed the incorporation of lanthanide activators into precipitated YF3 crystalline environment with low phonon energy. Furthermore, temperature-dependent upconversion luminescence behaviors of glass ceramic were systematically investigated to explore its possible application as optical thermometric medium. Impressively, both fluorescence intensity ratio of Er3+: 2H11/2  4I15/2 transition to Er3+: 4S3/2  4I15/2 one and fluorescence intensity ratio of Tm3+: 3F2,3  3H6 transition to the combined Tm3+: 1G4  3F4/Er3+: 4F9/2  4I15/2 ones were demonstrated to be applicable as temperature probes, enabling dual-modal temperature sensing. Finally, the thermal effect induced by the irradiation of 980 nm laser was found to be negligible in the glass ceramic sample, being beneficial to gain intense and precise probing signal and detect temperature accurately.  相似文献   

2.
Novel transparent Er3+ doped oxyfluoride glass-ceramics containing Ba4Gd3F17 nanocrystals were prepared by melt quenching followed by heat treatment of as-prepared glasses. The phase composition and microstructure were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Intense upconversion luminescence (UCL) was detected. Longer characteristic decay times and splitting of the luminescence bands compared to the precursor glass indicated the incorporation of erbium ions in the crystalline phase. The spectroscopic properties of glass ceramics were compared with single phase cubic and rhombohedral Ba4Gd3F17 ceramics. The unit cell parameters and atomic positions in the rhombohedral phase were calculated using Rietveld refinement. The local environment of Er3+ and the phonon energy of both polymorphs were analyzed using luminescence and Raman spectroscopy. In the glass ceramics, a phase transition from distorted metastable fluorite to ordered rhombohedral Ba4Gd3F17 was observed and resulted in the enhancement of the efficiency of UCL.  相似文献   

3.
The precipitation of monoclinic Na3ScF6 nanocrystals from aluminosilicate glass with specially designed compositions of SiO2-Al2O3-Na2O-NaF-ScF3-YbF3 was achieved for the first time. Impressively, competitive nanocrystallization of cubic NaYbF4 and monoclinic Na3ScF6 has been evidenced to be dependent on Na+ content and F/Na ratio in glass. Adopting Er3+ and Eu3+ dopants as structural probes, optical spectroscopic analyses verified that these emissive centers preferred to partition into NaYbF4 nanocrystals rather than Na3ScF6 ones.  相似文献   

4.
In this study, novel transparent Er3+ doped glass ceramics were prepared from melt-quenched oxyfluoride glasses with general composition of Na2O-NaF-BaF2-YbF3-Al2O3-SiO2. The crystallization of fluorite (BaF2, BaF2-YbF3, NaF-BaF2-YbF3 and Na0.5-xYb0.5+xF2+2x) and distorted fluorite (rhombohedral Ba4Yb3F17 and tetragonal NaF-BaF2-YbF3) phases was analysed in glass ceramics with different BaF2 and YbF3 ratio. The phase composition and microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Intense red upconversion luminescence (UCL) was detected under near-infrared excitation resulting from three photon upconversion followed by cross-relaxation between Er3+ and Yb3+ ions.The local environment of Er3+ ions in fluorite and distorted phases was analysed using site-selective spectroscopy. The Er3+ ions were found to act as nucleation centres in the glass ceramics containing BaF2. The phase transition from metastable fluorite to rhombohedrally and tetragonally distorted fluorite phases was detected using Er3+ ions as a probe.  相似文献   

5.
Transparent SiO2 - Al2O3 - Na2O - CaO - BaF2 - YbF3 glass ceramics (GC) doped with Er3+ ions were successfully fabricated by a melt-quenching technique with subsequent heat treatment. The formation of BaYbF5 nano-crystalline phase was confirmed by X-ray diffraction and transmission electron microscopy. Compared to the precursor glass (PG), the clearer Stark splitting and greatly enhanced up-conversion (UC) emission in GC indicate that Er3+ ions mainly enter into BaYbF5 nanocrystals with low phonon energy after crystallization. The temperature dependent on purple UC emission ratio (which is due to the Er3+ 4G11/24I15/2 and 2H9/24I15/2 transitions) and common green UC emission ratio with low-power excitation in BaYbF5 GC have been studied respectively. In addition, the UC mechanisms in PG and GC are illustrated and analyzed. The outstanding properties of Er3+-doped BaYbF5 transparent GC may present potential applications in all-solid-state UC lasers and optical fiber temperature sensors.  相似文献   

6.
The development of optical temperature sensors is of fundamental and industrial importance for various applications. Despite the great advance in optical temperature-sensing techniques, challenges remain to search for novel sensing materials with low cost, easy fabrication and high sensitivity. Here, transparent glass ceramics (GC) embedded with cubic Sr0.84Lu0.16F2.16:Yb3+/Er3+ nano-crystals were prepared via thermal annealing on the parent glass. The optical and structural properties were investigated. The enhanced emission intensity, obvious Stark splitting and prolonged lifetimes of Er3+ confirm the enrichment of Er3+ ions into formed Sr0.84Lu0.16F2.16 nano-crystals. The temperature sensing performance of Yb3+/Er3+ ions in Sr0.84Lu0.16F2.16GC were investigated based on up-conversion intensity ratio (FIR) from thermally coupled emitting states of Er3+. High energy difference (ΔE?=?839?cm?1) and high absolute sensitivity (27.4?×?10?4?K?1 at 606?K) are obtained. Our results reveal Sr0.84Lu0.16F2.16GC are excellent host for rare earth ions doping and potential candidate for optical thermometry.  相似文献   

7.
Transparent bulk glass ceramics (GCs) containing β?NaYF4:Yb3+/Er3+ upconversion nanocrystals were successfully prepared via a new sol-gel route for the first time. The structure, composition and morphology of the as-fabricated glass ceramics are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which confirm the segregation of β-NaYF4 nanocrystals in silica glass matrix with the maintenance of their crystalline phase and microstructure. More significantly, intense upconversion (UC) emissions can be realized for Yb3+/Er3+ co-doped glass ceramics by profiting from low-phonon-energy environment of erbium ions in β-NaYF4 nanophase. Furthermore, temperature-dependent UC emission performance of the present GC is systematacially investigated to explore their potential application in optical thermometry. Obviously, owing to intense UC emissions of β?NaYF4:Yb3+/Er3+ nanocrystals and high transparency, superior chemical/mechanical stability of oxide glassy matrix, the as-fabricated GCs exhibit good temperature sensing performance and good thermostability for precise temperature detecting. It is expected that the preliminary research can give a reference for designing new transparent bulk GCs and may exploit a valid method for developing high-performance optical temperature sensors.  相似文献   

8.
《Ceramics International》2017,43(16):13199-13205
Crystalline phase evolution through merely adjusting composition was achieved in silicate glass ceramics containing LunOn-1Fn+2 (n = 5–10) nanocrystals. Orthorhombic or cubic phase nanocrystals were precipitated in the aluminosilicate glass matrix after thermal treatment together with varying the Na2O/NaF ratio. Oxyfluoride nanocrystals with quasi-spherical shape show homogenous and dense distribution in glass matrix by transmission electron microscopy measurement. Intense upconversion and mid-infrared emissions were realized in these glass ceramics compared to the precursor glass, and the emission spectral shapes, relative emission intensity and fluorescence decay curves of Er3+ in cubic LuOF embedded samples exhibit remarkable differences due to the crystal phase dependent effect in glass ceramics. These results indicate that the crystallization and luminescence properties of oxyfluoride glass ceramics could be modified through the alteration of glass composition, which could be used for the development of novel glass ceramics and design of luminescent properties.  相似文献   

9.
Fluorescence intensity ratio (FIR) techniques for temperature sensing based on the thermally-coupled energy levels (TCELs) of two excited states of rare earth ions are widely investigated. However, their performance in lower temperature detection are poor because of thermal decoupling between two emitting levels with relatively large energy gap. On the other hand, most of luminescent thermometer materials so far reported are in powder form, which suffer from severe light scattering and high hygroscopicity. Fortunately, transparent glass ceramics offer an alternative to improve optical property as well as stability of luminescent materials. Hence, herein self-crystallized 20% Tb3+ doped transparent Ba2LaF7 glass ceramics were synthesized by traditional high-temperature melting method to examine its temperature sensing ability by employing the two low-lying states 7F5 and 7F6 of Tb3+, which are thermally coupled even at lower temperature. Under the resonance excitation of 7F55D4 transition at 543 nm, the emission intensity of 5D47F6 enhances with the temperature rising from 300 K to 630 K. The maximum relative sensitivity reaches 2.88% K?1 at 300 K, which is better than the previous results reported. Moreover, the repeatability of the integrated intensity of 5D4 emission of Tb3+ under eight consecutive heating-cooling cycles indicates that the sample has a good reliability and reusability. All results suggest that the 20% Tb3+ doped transparent Ba2LaF7 glass ceramics are one of the excellent candidate materials for optical thermometers.  相似文献   

10.
It has been an open question whether Nd3+ ions are incorporated into the crystalline phase in oxyfluoride glass ceramics or not. Moreover, relative research has indicated that spectra characters display minor differences between before and after heat treatment in oxyfluoride glass compared to similar Er3+-, Yb3+-, Tm3+-, Eu3+-, etc.-doped materials. Here, we have studied the distribution of Nd3+ ions in oxyfluoride glass ceramics by X-ray diffraction quantitative analysis and found that almost none of the Nd3+ ions can be incorporated into the crystalline phase. In order to confirm the rationality of the process, the conventional mathematical calculation and energy-dispersive spectrometry line scanning are employed, which show good consistency. The distribution of Nd3+ ions in oxyfluoride glass ceramics reported here is significant for further optical investigations and applications of rare-earth doped oxyfluoride glass ceramics.  相似文献   

11.
《Ceramics International》2023,49(3):4193-4203
Germanate-based oxyfluoride transparent glass-ceramic functionalized by Tm3+:Ca2YbF7 nanocrystals was newly developed. The tremendously enhanced upconversion emission of 3F2,3 energy levels by in situ crystallization was extremely beneficial for constructing optical thermometry involving the indirect thermally coupled energy levels (1G4 and 3F2,3) of Tm3+ ions. Utilizing the fluorescence intensity ratio technique, the thermometry potentials of PG and GC8 were systematically evaluated based on the emissions from 3F2,3 and 1G4 energy levels. The relative and absolute sensitivities, thermometry resolutions, and repeatabilities were superior to many reported materials. This work provides an avenue for precipitating ternary fluoride nanocrystals containing rare earths in germanate-based oxyfluoride glass, and proposes a promising way to achieve high performance optical thermometry based on the emissions from widely spaced energy levels.  相似文献   

12.
Cr3+ doped transparent glass ceramics of SiO2–Ga2O3–Li2O were fabricated by melt-quenching and subsequent crystallization. X-ray diffraction and transmission electron microscopy analyses evidenced that cubic LiGa5O8 nanocrystals were homogeneously precipitated among the silicate glass matrix. The incorporation of Cr3+ ions into LiGa5O8 nanocrystals was evidenced by absorption, emission and time-resolved luminescence spectra. Impressively, the present Cr3+ doped glass ceramics were demonstrated to be a new near-infrared (∼720 nm) long-lasting bulk phosphor whose luminescence can last for more than 2 h after stoppage of UV (250–350 nm) irradiation. The occurring of Cr3+ long-lasting phosphorescence in the glass ceramics was confirmed to be mainly due to the precipitation of Cr3+:LiGa5O8 nanocrystals from glass matrix. The filling/releasing of electrons into/from the intrinsic traps of LiGa5O8 nanocrystals through the conduction band of host were proposed to be responsible for the realization of the long-lasting phosphorescence of the investigated Cr3+ doped glass ceramics.  相似文献   

13.
Smart windows have attracted considerable attention due to their wide applications in optical data storage, switchable sunroof and temperature sensing. The development strategy for smart windows is focused on performance design, enhancement and integration. However, developing integrated multi-functional smart windows in a single material remains a challenge. In this work, we have successfully prepared (K0.5Na0.5)0.95Ba0.04Er0.01NbO3 (4Ba-1Er-KNN) transparent ceramics for potential applications of temperature detection and optical information storage in smart windows. With alternating ultraviolet (UV) illumination and 300 °C thermal stimulation, the prepared 4Ba-1Er-KNN ceramics can not only achieve non-destructive luminescence readout, but also exhibits an ultra-high photochromic (PC) contrast with rapid response time of 1 s. Furthermore, based on the up-conversion (UC) photoluminescence (PL) intensity ratio of Er3+: 2H11/2/4S3/2 thermally coupled levels, excellent low-temperature sensing performance with the maximum relative sensitivity of 0.023 K−1 at 213 K is obtained. The integration between UC PL, PC response and temperature sensing performance makes it possible to develop multi-functional smart windows.  相似文献   

14.
《Ceramics International》2017,43(17):14951-14955
Eu3+/Nd3+-codoped Ba2LaF7 transparent bulk glass ceramics were successfully fabricated by glass self-crystallization. The structure and morphology of the sample were investigated by X-ray diffraction, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction. The fluorescence intensity ratios of Nd3+ emission at 800 nm to the Eu3+ emission at 699 nm (5D07F4) were measured under 578.3 nm laser excitation in a wide temperature range from 290 to 740 K. A relatively good temperature sensing performance was obtained with a maximum relative sensitivity of 1.02% K−1 at 420 K. Both the emission peaks for temperature sensing were located in the optical window of biological tissue, which is favorable for biomedical applications. The results indicate that Ba2LaF7:Nd3+/Eu3+ glass ceramics have a potential application as temperature probes.  相似文献   

15.
《Ceramics International》2020,46(13):20664-20671
Trivalent Er3+-doped La2(MoO4)3 upconversion phosphors with intense green emmision were synthesized at 800 °C by the solid-state reaction route, promoting the development of novel optical thermometry. The color emitted from the samples was minorly affected by the excitation power and doping concentration. Yb3+ is a better sensitizer for the La2(MoO4)3: Er3+ phosphor and it can enhance the emission intensity when a certain amount is co-doping in the system. The up-conversion luminescent mechanism was investigated using the pump power-dependent UC emission spectra. Alkali metal doping increased the up-conversion emission intensities drastically, and Li+ ions can enhance the luminous intensity by more than 20 times. The fluorescence intensity ratio of the transition emission 2H11/2-4I15/2 and 4S3/2-4I15/2 was used to study upconversion optical temperature sensing. The sensitivity changes from doping with diverse alkali metal ions and their effects on the optimal temperature range are discussed in detail. Alkali metal ions doping extended the temperature range, indicating that this phosphor is a potential candidate for temperature-sensing probes.  相似文献   

16.
Rare earth tri-doped precursor glasses (PGs) were prepared by traditional high-temperature melting method, and NaSr2Nb5O15 transparent glass–ceramic (GC) was obtained by subsequent heat treatment. Results exhibit that the up-conversion emission intensity of GC is greatly enhanced compared to PG. Benefiting from the multiple emission bands from Ho3+ and Tm3+ and their different temperature dependence, multi-ratio optical temperature measurement is realized. The ultimate relative sensitivity (Sr-max) can reach 2.00% K−1 between 298 and 598 K. It provides a possibility for self-reference temperature measurement. Furthermore, under the actual charging and discharge conditions, the GC heated at 750°C has great energy density (Wd = 1.15 J/cm3@600 kV/cm) and high-power density (Pd = 290.4 MW/cm3@600 kV/cm) with ultrafast discharge time (<15.8 ns). The previous results indicate that the obtained GC with good multifunctional properties is expected to be applied in the field of photoelectric conversion.  相似文献   

17.
Er3+-doped transparent oxyfluoride borosilicate glass ceramics containing LaOF nanocrystals have been obtained by the high temperature melt-quenching and subsequent heat treatment method. The formation of LaOF nanocrystals in the glass matrix was confirmed by XRD and TEM results. In comparison with the precursor glass, Er3+-doped transparent oxyfluoride glass ceramics containing LaOF nanocrystals exhibited efficient up-conversion luminescence. Especially, the green emission intensity was greatly enhanced about nearly 200 times and its up-conversion mechanism can be ascribed to a two-photon absorption process.  相似文献   

18.
《Ceramics International》2016,42(12):13990-13995
A series of Yb3+/Er3+ codoped transparent oxyfluoride glass ceramics with various amounts of Yb3+ have been successfully fabricated and characterized. Under 980 nm laser prompting, the samples produce intense red, green and blue up-conversion emissions, and the emission intensities increase with Yb3+ concentration and heat treatment temperature. Before losing good transparency in the visible region, optimum emission intensities are obtained for the sample with 25 mol% of Yb3+ at a heat treatment temperature of 680 °C. A possible up-conversion mechanism is proposed from the dependence of emission intensities on pumping power. The fluorescence intensity ratio between the two thermally coupled levels 2H11/2 versus 4S3/2 was measured with the laser output power of 57 mW to avoid the possible laser induced heating effect. The fluorescence intensity ratio values in the temperature range from 295 K to 723 K can be well fitted with the equation: A exp (−∆E/kBT), where A = 6.79 and ∆E=876 cm−1. The relative temperature sensitivity at 300 K was evaluated to be 1.4% K−1. All the results suggest that the Yb3+/Er3+ codoped CaF2 glass ceramics is an efficient up-conversion material with potential in optical fiber temperature sensing.  相似文献   

19.
《Ceramics International》2016,42(11):13086-13090
Tb3+/Eu3+ co-doped glass ceramics containing NaCaPO4 nanocrystals were successfully synthesized via traditional melt-quenching route with further heat-treatment and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence spectroscopy. The energy transfer process of Tb3+→Eu3+ was confirmed by excitation and emission spectra and luminescence decay curves, and the energy transfer efficiency was also estimated. The results indicated that the efficient emission of Eu3+ was sensitized by Tb3+ under the excitation of 378 nm, realizing tunable emission in the transparent bulk glass ceramics containing NaCaPO4 nanocrystals. Furthermore, optical thermometry was achieved by the fluorescence intensity ratio between Tb3+:5D47F5 (~542 nm) and Eu3+:5D07F2 (~612 nm). The maximum absolute sensitivity of 4.55% K−1 at 293 K and the maximal relative sensitivity of 0.66% K−1 at T=573 K for Tb3+/Eu3+ co-doped transparent NaCaPO4 glass ceramic are obtained. It is expected that the investigated transparent NaCaPO4 glass ceramics doped with Tb3+/Eu3+ have prospective applications in display technology and optical thermometry.  相似文献   

20.
Glass ceramic has been regarded as an alternative to traditional bulk materials such as single crystal and transparent ceramic. The nucleation/growth behavior of glass ceramic via crystallization is an important topic but is seldom studied so far. In the present work, a series of La3+-based oxyfluoride aluminosilicate glasses are designed to understand their nanocrystallization processes upon heating. Impressively, controllable LaF3, α-NaLaF4 and β-NaLaF4 phase-competitive crystallization in glasses is achieved and structural/spectroscopic characterizations confirm the key role of Al/Si ratio to determine the release of Na+ ions from glass network to participate in crystallization and phase transformation. Furthermore, the developed glass ceramics are evidenced to be ideal hosts for lanthanide dopants (such as Eu3+ and Yb3+/Er3+), which can effectively incorporate into the precipitated fluoride crystal lattices by substituting La3+ ions. As a consequence, incoherent LED-excitable upconverting devices are constructed to demonstrate their promising application as emitting media in display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号