首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ microcantilever bending tests were carried out to evaluate the healing efficiency of pre-notched Ti2AlC ceramic after annealing at 1200 °C for 1.5 h. Microcantilevers of different orientations were fabricated with focused ion beam method at different locations, i.e. in a singular Ti2AlC grain, at a grain boundary or at the Ti2AlC–Al2O3 interface after healing. Ti2AlC microcantilever shows an anisotropic bending strength (ranging between 9.6 GPa and 4.6 GPa depending on the precise crystallographic orientations) that is closely related to the different atomic bonds in the layered structure. After healing, the Ti2AlC–Al2O3 microcantilevers exhibit almost the same strength of about 5.2 GPa, i.e. slightly higher than the cleavage strength (4.6 GPa) of the initial Ti2AlC microcantilevers. It suggests that the orientation of the matrix grain has no significant influence on the strength of healed microcantilevers. Furthermore, it turns out that the strength of the microcantilever with a healed grain boundary is at least twice the strength of the initial Ti2AlC cantilever with a grain boundary. It is concluded that the oxidation dominated self-healing mechanism of Ti2AlC ceramics can result in a perfect recovery of mechanical performance. The paper shows that the in situ microcantilever bending test provides a quantitative method for the evaluation of the strength of self-healing ceramics.  相似文献   

2.
The joining of titanium aluminum carbides has been successfully performed at high temperature and low oxygen partial pressure. The mechanism of the bonding is attributed to the preferential oxidation of Al atoms in the titanium aluminum carbides at low oxygen partial pressure, which leads to the formation of an Al2O3 layer through the joint interface. The specimens joined at 1400 °C exhibit a high flexural strength of 315 ± 19.1 MPa for Ti2AlC and 332 ± 2.83 MPa for Ti3AlC2, which is about 95% and 88% of the substrates, respectively, and the high flexural strength can be retained up to 1000 °C. The high mechanical performance of the joints is attributed to the similar density and thermal expansion coefficient values of Al2O3 to those of the Ti2AlC and Ti3AlC2 substrates. It indicates that bonding via preferential oxidation at low oxygen partial pressure is a practical and efficient method for Ti2AlC and Ti3AlC2.  相似文献   

3.
《Ceramics International》2016,42(11):13256-13261
The oxidation behavior of pressureless liquid phase sintered SiC ceramics with Al2O3 and Y2O3 as sintering additives was investigated in the temperature range from 1000 °C to 1600 °C at the interval of 100 °C for 5 h. The relationship between residual flexural strength and microstructure was analyzed in detail. It was found that the SiC specimens suffered from mild oxidation below 1300 °C. The flexural strength of SiC specimens after oxidation at 1100 °C was the highest (90% of the original strength) due to the formation of dendritic grains, which filled pores and healed cracks. And the flexural strength was almost above 80% of the original flexural strength when the oxidation temperature was below 1300 °C. Meanwhile, the weight of specimens underwent steady increase. However, when the oxidation temperature was elevated to above 1400 °C, the specimens began to suffer from severe oxidation, which resulted in a lot of through pores and cracks on the surface, bringing about the sharp decrease of flexural strength to 30% of original strength when the oxidation temperature of 1600 °C was reached. And the weight of the specimens after huge increase began to show downtrend when the oxidation temperature was elevated to 1600 °C due to the spalling of oxidation products.  相似文献   

4.
The effect of Si additions on the oxidation behavior of Cr2AlC based coatings is investigated. Oxidation experiment was performed at 1120 °C in air for 4 h for Cr2AlC and Cr2Al1xSixC (0 < x  0.06) coatings. The crystal structure, microstructure and chemical composition of the as-deposited as well as oxidized coatings have been investigated. Alloying Cr2AlC with up to 0.7 at.% Si causes an increase in Al2O3 scale thickness by up to 40 ± 17%. Electron microscopy and atom probe tomography data support the notion that the here reported Si concentration induced 40% increase in Al2O3 layer thickness (during oxidation at 1120 °C for 4 h) is enabled by the Si concentration induced, and hence concomitant, increase in nucleation density of Al2O3.  相似文献   

5.
Single phase hexagonal α-Ta2C ceramics were synthesized by spark plasma sintering and using TaC and Ta as the starting powders. Effects of sintering temperatures and holding times on the densification process, phase formation, microstructure development, and mechanical properties of the α-Ta2C ceramics were investigated. Densification occurred in the temperature range of 1520–1675 °C in less than 2.5 min. But completion of the Ta2C formation took about 40 min at 1500 °C, and 5 min at 1900 °C. The materials sintered at 1500 °C consisted of fine equiaxed grains. The Ta2C grains grew anisotropic to form an elongated self-toughening microstructure at 1700 °C. At 1900 °C, the neighboring Ta2C individual crystals coalesced to form large Ta2C blocks to entrap the residual pores. Although higher flexural strength and fracture toughness were reached at 1700 °C, the unstable microstructures of the Ta2C materials indicated limited applications at high temperatures.  相似文献   

6.
Oxidation of commercial Ti2AlC MAX phase powders at 200–1000 °C has been investigated by XRD, XPS, SEM, STA and TGA coupled with FTIR. These powders are a mixture of Ti2AlC, Ti3AlC2, TiC and Ti1.2Al0.8. Oxidation at 400 °C led to disappearance of carbide phases from Ti 2p, Al 2p and C 1s XPS spectra. At 600 °C, powders changed from dark grey to light grey with a significant volume increase due to crack formation. Powders were severely oxidized by detecting rutile with minor anatase TiO2. At 800 °C, α-Al2O3 was detected while anatase transformed into rutile TiO2. The cracks were healed and disappeared. At 1000 °C, the Ti2AlC powders were fully oxidized into rutile TiO2 and α-Al2O3 with a change of powder color from light grey to yellow. FTIR detected the release of C as CO2 from 200 °C onwards but with additional CO above 800 °C.  相似文献   

7.
Two series of raw materials were adopted to form TiAl/Ti2AlC composites: Ti/Al/TiC and Ti/Al/C. Differential thermal analysis (DTA) of starting powers and X-ray diffraction (XRD) of samples sintered at different temperatures from 600 °C to 1300 °C by hot pressing were utilized to analyze the phase transformation and the mechanism of synthesis. Scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) was utilized to investigate the morphology characteristics of the products. The experimental results showed that Ti reacted with Al to form TiAl intermetallics below 900 °C; and above 900 °C, TiAl reacted with TiC to produce dense TiAl/Ti2AlC composites. The products sintered at 1200 °C had fine crystals and dense fibres, and the distribution of Ti2AlC particles in TiAl matrix was homogeneous.  相似文献   

8.
Ta2O5 thin films deposited via a metal-organic decomposition method were crystallized via atmospheric pressure annealing and a high-pressure crystallization (HPC) process. Ta2O5 thin films started to become crystallized at 700 °C as subjected to atmospheric pressure annealing. When the HPC process was adopted and annealing at 16.5 MPa was performed, the crystallization temperature of Ta2O5 films was greatly dropped to as low as 350 °C. The developed HPC process considerably reduced the thermal budget and energy consumption during film processing. The crystallized Ta2O5 phase was found to be homogeneously distributed within the HPC-derived films. With annealing at 700 °C under atmospheric pressure, the silicon species diffused from the substrates into the Ta2O5 layers, thereby leading to reduced dielectric constants. The HPC process effectively suppressed the interdiffusion between the substrates and dielectric layers by lowering the required heating temperature, and also significantly increased the dielectric constants of Ta2O5 thin films. The HPC process was confirmed to effectively lower the crystallization temperature and improve the dielectric properties of Ta2O5 thin films.  相似文献   

9.
《Ceramics International》2016,42(5):5686-5692
This work reports on the fabrication and high temperature ablation property of a new ZrC/Cr2AlC composite. The ZrC/Cr2AlC composite was obtained by hot pressing a mixture of 15 vol% ZrC and 85 vol% Cr2AlC powders at 1300 °C with 20 MPa for 1 h in Ar atmosphere. The composite had a flexural strength of 622 MPa, higher than 400 MPa for Cr2AlC. The high temperature ablation behavior of the composite was investigated using the oxyacetylene torch ablation test. During oxyacetylene torch testing, the composite underwent a series of thermal decomposition and oxidation. Microstructure and composition of the synthesized composite before and after the ablation test were characterized with scanning electron microscopy and X-ray diffractometry techniques.  相似文献   

10.
Reactive sintering of 8Ti:Al4C3:C powder mixtures to form the ternary carbide Ti2AlC is studied in the temperature range 570–1400 °C. After sintering at 1400 °C for 1 h, only the MAX phase Ti2AlC and some TiC are produced. A series of intermediate phases, such as TiC, Ti3Al, Ti3AlC are detected during the reactive sintering process. From X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations, a reaction path is proposed for the intermediate phases and Ti2AlC formation. Results show that reaction kinetics may play an important role in the understanding of the reaction mechanisms.  相似文献   

11.
The self-healing behavior of MoSi2/borosilicate glass composite was investigated by comparing the flexure strength of pre-scratched specimens before and after healing treatment. The post-healing strength partially recovered when healing temperature was higher than 800 °C, and the healing of the scratch was observed after healing treatment at 900 °C and 1400 °C. Two kinds of possible mechanisms were proposed on the basis of morphology and elemental analyses of healing areas. The specimen treated at 900 °C showed a porous healing area and the strength recovered 28.6% resulted from the oxidation of MoSi2 into MoO3 and SiO2. By contrast, the specimen treated at 1400 °C had a dense healing area and the strength recovered 86.9% due to the viscous flow of borosilicate glass.  相似文献   

12.
V2O5 reaction and melt infiltration in plasma-sprayed 7 wt% Y2O3–ZrO2 (YSZ) coatings were investigated at temperatures ranging from 750 °C to 1200 °C using SEM and TEM combined with EDS. The interlamellar pores and intralamellar cracks, common in plasma-sprayed materials, provide pathway for the molten species. The microstructure of the contaminated coatings is therefore the result of the interplay between the dissolution/reaction rates of the V2O5 with YSZ coating and the infiltration rates of the molten species. Near the coating surface, the reaction front proceeds in a planar fashion, via dissolution of the lamella and precipitation of fine-grained reaction products composed of ZrV2O7 (for reactions at 750 °C and below), m-ZrO2 and YVO4. The thickness of this planar reaction zone or PRZ was found to increase as reaction time and temperature increased. The melted V2O5 was observed to infiltrate along the characteristic microstructure of plasma-sprayed coatings, i.e. the interconnected pores and cracks, and react with the YSZ. The thickness of this melt infiltrated reaction zone or MIRZ ranged from 5 μm for reactions at 750 °C for 30 min to 130 μm for reactions at 1000 °C for 90 min. At 1200 °C, only a PRZ was observed (i.e. the thickness of the MIRZ was nominally zero), suggesting that the dissolution reaction within the pores/cracks and subsequent formation of reaction products may limit infiltration. Fifty-hour heat-treatments at 1000 °C and 1200 °C prior to reaction with the V2O5 at 800 °C for 90 min were used to change the microstructural features of the coating, such as crack connectivity and pore size. The heat-treatment at 1000 °C was found most deleterious to the coating due to large cracks created via a desintering process that afforded deep penetration of the molten V2O5.  相似文献   

13.
Al2O3 particle-reinforced Cr2AlC in situ composites were successfully fabricated from powder mixtures of Cr3C2, Cr, Al, and Cr2O3 by a reactive hot-pressing method at 1400 °C. A possible synthesis mechanism was proposed to explain the formation of the composites in which Al2O3 was formed by the aluminothermic reaction between Al and Cr2O3, meanwhile, Cr3C2, Al, together with Cr reacted to form Cr2AlC in a shortened reaction route. The effect of Al2O3 addition on the microstructure and mechanical properties of Cr2AlC/Al2O3 composites was investigated. The results indicated that the as-sintered products consisted of Cr2AlC matrix and Al2O3 reinforcement, and the in situ formed fine Al2O3 particles dispersed at the matrix grain boundaries. The flexural strength and Vickers hardness of the composites increased gradually with increasing Al2O3 content. But the fracture toughness peaked at 6.0 MPa m1/2 when the Al2O3 content reached 11 vol.%. The strengthening and toughening mechanism was also discussed.  相似文献   

14.
《Ceramics International》2017,43(17):14798-14806
The oxidation behaviors of tantalum carbide (TaC)- hafnium carbide (HfC) solid solutions with five different compositions, pure HfC, HfC-20 vol% TaC (T20H80), HfC- 50 vol% TaC (T50H50), HfC- 80 vol% TaC (T80H20), and pure TaC have been investigated by exposing to a plasma torch which has a temperature of approximately 2800 °C with a gas flow speed greater than 300 m/s for 60 s, 180 s, and 300 s, respectively. The solid solution samples showed significantly improved oxidation resistance compared to the pure carbide samples, and the T50H50 samples exhibited the best oxidation resistance of all samples. The thickness of the oxide scales in T50H50 was reduced more than 90% compared to the pure TaC samples, and more than 85% compared to the pure HfC samples after 300 s oxidation tests. A new Ta2Hf6O17 phase was found to be responsible for the improved oxidation performance exhibited by solid solutions. The oxide scale constitutes of a scaffold-like structure consisting of HfO2 and Ta2Hf6O17 filled with Ta2O5 which was beneficial to the oxidation resistance by limiting the availability of oxygen.  相似文献   

15.
《Ceramics International》2016,42(6):7290-7299
The present study presents the effect of addition of diluents on the crystal morphologies and the impact on the oxidation resistance of β-SiAlON powders obtained from combustion synthesis method. Pure β-SiAlON were synthesized with diluents. It was observed by SEM that the diluents resulted in the transformation from large hexagonal column-shaped crystals to fine isotropic grains. Oxidation experiments were conducted by thermogravimetric analysis (TGA) in the temperature range from 1200 °C to 1400 °C. The TGA results indicated that oxidation was controlled by mixed chemical reaction and diffusion process. The chemical reaction step was found to be rate-controlling at low oxidation temperatures (1200 °C and 1300 °C), while at high temperature (1400 °C), diffusion was found to control the reaction rate. Oxidation products were investigated by X-ray Diffraction (XRD) analysis and found to be made up of SiO2, Al2O3. This research aims to provide guidance for the fabrication of β-SiAlON by combustion synthesis, thus facilitating its further application in high temperature industry.  相似文献   

16.
A nearly fully dense (>98%) electroconductive silicon nitride—35 vol.% titanium diboride composite was obtained by hot isostatic pressing (HIP) in presence of a low content of sintering aids (0.5 wt.% Y2O3 + 0.25 wt.% Al2O3). To improve the oxidation behaviour of this composite material, a 3-μm thick protective coating of aluminium oxide was deposited on cubic samples (4 mm × 4 mm × 4 mm) by microwave plasma-enhanced chemical vapor deposition (PECVD) using an oxygen plasma and an organometallic precursor (trimethylaluminium). SEM images demonstrated that the coating was homogeneously distributed on the external surface of the specimens.Non-isothermal and isothermal oxidation tests were carried out with a Setaram Microbalance under pure flowing oxygen (10 L/h) on both uncoated and coated Si3N4–TiB2 samples. In the case of non-isothermal oxidation of a substrate without coating, the reaction started at 600 °C. Between 1100 and 1350 °C, a plateau was observed and above 1350 °C the weight gain increased significantly. In presence of an Al2O3 coating, the composite started to oxidize at higher temperature (1200 °C). Isothermal kinetics recorded for 24 h, at 1350 and 1400 °C, revealed that the presence of the Al2O3 coating improved drastically the oxidation resistance and changed the shape of the curves from globally parabolic to almost logarithmic. An explanation of this protective behaviour, based on the characterization by XRD, SEM and EDS of the reaction products, is proposed.  相似文献   

17.
Mechanically activated hot-pressing technology was used to synthesize a fine-crystalline Cr2AlC ceramic at relatively low temperatures. A mixture of Cr, Al and C powders with a molar ratio of 2:1.2:1 was mechanically alloyed for 3 h, and then subjected to hot pressing at 30 MPa and different temperatures for 1 h in Ar atmosphere. The results show that a dense Cr2AlC ceramic with a grain size of about 2 μm can be synthesized at a relatively low temperature of 1100 °C. The synthesized fine-grained Cr2AlC has a high density of 99%, which is higher than the 95% density for the coarse-grained Cr2AlC (grain size of about 35 μm) as synthesized by hot pressing unmilled Cr, Al and C. The flexural strength, fracture toughness and Vickers hardness of the fine-grained Cr2AlC were determined and compared with the values for the coarse-grained Cr2AlC.  相似文献   

18.
Microwave dielectric properties of corundum-structured Mg4Ta2O9 ceramics were investigated as a function of sintering temperatures by an aqueous sol–gel process. Crystal structure and microstructure were examined by X-ray diffraction (XRD) technique and field emission scanning electron microscopy (FE-SEM). Sintering characteristics and microwave dielectric properties of Mg4Ta2O9 ceramics were studied as a function of sintering temperature from 1250 °C to 1450 °C. With increasing sintering temperature, the density, εr and Qf values increased, saturating at 1300 °C with excellent microwave properties of εr=11.9, Qf=195,000 GHz and τf=?47 ppm/°C. Evaluation of dielectric properties of Mg4Ta2O9 ceramics were also analyzed by means of first principle calculation method and ionic polarizability theory.  相似文献   

19.
The autonomous crack-healing capability of Cr2AlC MAX phase ceramic by surface oxidation at elevated temperatures has a huge potential for high temperature structural and protective coating applications. In this work we use time-lapse X-ray computed tomography (CT) to track the fine details of local crack filling phenomena in 3 dimensions (3D) with time. The maximum crack width that could be fully healed upon exposure to 1200 °C in air is 4.8 μm in 4 h and 10 μm after 12 h. Furthermore, during healing Cr7C3 phase is observed beneath the dense Al2O3 layer (average thickness of 1 μm on each crack surface) when the crack width exceeds 2 μm. The 3D image sequences indicated that the rate of healing is essentially independent of position along, or across, the crack faces. The crack healing kinetics of Cr2AlC at 1200 °C broadly follows a parabolic rate law with a rate constant of 4.6 × 10−4 μm2 s−1. The microstructure, composition and thickness of the oxide scale in the healed crack area are characterized via post mortem SEM-EDS measurements and confirm the formation of an initial dense alumina layer on top of which a more porous layer forms. Impurity Cr particles appear to accelerate the oxidation process locally and correlative SEM imaging of the same region suggests this is by providing Cr2O3 nucleation sites.  相似文献   

20.
MoSi2, MoSi2–10 vol.% Al2O3, MoSi2–30 vol.% Al2O3 (denoted as MA0, MA1, MA3, respectively) coatings were fabricated by vacuum plasma spraying (VPS), and their oxidation behavior was examined at low temperature (500 °C) and high temperature (1500 °C). The test at 500 °C showed that the addition of Al2O3 effectively restrained the pest oxidation of MoSi2. The MA1 coating had satisfactory fluid surface and presented good oxidation resistance at 1500 °C. However, the MA3 coating showed worse oxidation resistant behavior compared with the MA0 coating because of mullite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号