首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanum–zirconium–cerium composite oxide (La2(Zr0.7Ce0.3)2O7, LZ7C3) coatings were prepared under different conditions by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies, cyclic oxidation behavior of these coatings were studied. Elemental analysis indicates that the coating composition has partially deviated from the stoichiometry of the ingot, and the existence of excess La2O3 is also observed. The optimized composition of LZ7C3 coatings could be effectively achieved by the addition of excess CeO2 into the ingot or by properly controlling the deposition energy. Meanwhile, when the deposition energy is 1.15 × 104–1.30 × 104 J/cm2, the coating has a similar X-ray diffraction (XRD) pattern to the ingot, and the thermal cycling life of the coating is also superior to other coatings. The spallation of the coatings occurs either within the ceramic layer approximately 6–10.5 μm above its thermally grown oxide (TGO) layer or at the interface between ceramic layer and bond coat.  相似文献   

2.
Diamond-like carbon (DLC) coatings were successfully deposited on carbon nanotube (CNT) films with CNT densities of 1 × 109/cm2, 3 × 109/cm2, and 7 × 109/cm2 by a radio frequency plasma-enhanced chemical vapor deposition (CVD). The new composite films consisting of CNT/DLC were synthesized to improve the mechanical properties of DLC coatings especially for toughness. To compare those of the CNT/DLC composite films, the deposition of a DLC coating on a silicon oxide substrate was also carried out. A dynamic ultra micro hardness tester and a ball-on-disk type friction tester were used to investigate the mechanical properties of the CNT/DLC composite films. A scanning electron microscopic (SEM) image of the indentation region of the CNT/DLC composite film showed a triangle shape of the indenter, however, chippings of the DLC coating were observed in the indentation region. This result suggests the improvement of the toughness of the CNT/DLC composite films. The elastic modulus and dynamic hardness of the CNT/DLC composite films decreased linearly with the increase of their CNT density. Friction coefficients of all the CNT/DLC composite films were close to that of the DLC coating.  相似文献   

3.
Oxidation resistant C-AlPO4–mullite coating for SiC pre-coated carbon/carbon composites (SiC-C/C) was prepared by a novel hydrothermal electrophoretic deposition process. The phase composition, surface and cross-section microstructure of the as-prepared multi-layer coatings were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The influence of deposition voltage on phase composition, microstructure and oxidation resistance of the as-prepared coatings was particularly investigated. Results show that the outer layer coating mainly composed of C-AlPO4 and mullite phase can be achieved after the hydrothermal electrophoretic deposition. The thickness, density and anti-oxidation property of the C-AlPO4–mullite coating was improved with the increase of deposition voltage from 160 V to 200 V. The multi-layer coating prepared at a voltage of 200 V exhibit excellent anti-oxidation property, which can effectively protect C/C composites from oxidation in air at 1773 K for 324 h with a weight loss of 1.01%. The failure of the multi-layer coatings is due to the generation of cross-holes in the coating, which cannot be self-cured by the metaphosphate and silicate glass layer after long time oxidation at 1773 K.  相似文献   

4.
The epoxy coating was cataphoretically deposited on steel and steel modified by electroplated Zn–Mn alloy of different chemical contents. The samples were immersed in 0.5 mol dm−3 NaCl solution for 60 days. The electrochemical impedance spectroscopy (EIS) analysis showed that the values of pore resistance for epoxy coating on steel and Zn–Mn alloy with 16 at.% Mn were two orders of magnitude higher, while the capacitance values were two orders of magnitude lower than those for the epoxy coating on Zn–Mn alloy substrates with 5 and 8 at.% Mn. It was assumed that the main reason for such a difference was metallic substrate dissolution during cataphoretic deposition, due to high pH (12.9). This assumption was supported by energy dispersive X-ray spectrometry (EDS) measurements showing that the amount of released Zn in epoxy coatings decreased as Mn percent in the Zn–Mn alloys increased. In addition, Zn–Mn alloy coatings on steel, as well as bare steel, were immersed in 0.1 mol dm−3 NaOH solution, pH 12.9, simulating conditions during cataphoretic deposition, and polarization resistance measurement in this solution indicated that Mn inclusions in Zn–Mn alloy substrate prevent Zn dissolution in alkaline medium.  相似文献   

5.
To protect carbon/carbon (C/C) composites against oxidation, a mullite coating was prepared on SiC precoated C/C composites by a hydrothermal electrophoretic deposition process. The phase composition, microstructure and oxidation resistance of the prepared mullite/SiC coatings were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to achieve crack-free mullite coatings. The mullite/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 322 h with a weight loss rate of only 4.89 × 10?4 g/cm2 h. The failure of the multi-layer coatings is considered to be caused by the volatilization of silicate glass layer, the formation of microholes and microcracks on the coating surface and the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 111.11 kJ/mol.  相似文献   

6.
《Ceramics International》2017,43(9):7321-7328
Yttria-Stabilized Zirconia (YSZ) is the most common material for thermal barrier coatings. Suspensions of 3 mol% YSZ nanoparticles in acetone medium have been prepared in presence of different amounts of iodine as dispersant. Size distribution of particles in the suspensions and zeta potential were measured as a function of dispersant concentration. Adding 1.2 g/l iodine was found to be effective for the dispersion of YSZ nanoparticles in acetone. The stability of YSZ suspension in acetone increased with iodine content increasing until reached 1.2 g/l. Mean diameter of particles and zeta potential of the YSZ suspension in acetone were 912 nm and 2.4 mV respectively, and with addition of 1.2 g/l iodine shifted to 111.6 nm and 50.2 mV respectively. Electrophoretic deposition (EPD) process has been carried out from this suspension at different applied voltages and deposition times. A uniform green coating was obtained at voltage of 6 V and deposition time of 2 min the thickness of the green coating is measured about 25 µm.  相似文献   

7.
Silicon powders with different medium sizes (114 μm, 79 μm and 31 μm, respectively) were used to fabricate coatings by air plasma spraying. The velocity and temperature of in-flight silicon particles during plasma spraying were determined. The composition and microstructure of the coatings were characterized and some physical properties of the coatings were measured. The obtained results showed that the size of silicon particles had great influence on their velocity and temperature in plasma flame. The oxidation of silicon particles in the spraying process was observed and is higher for particles of smaller sizes. Areas of silicon oxide in micrometer size are embedded and randomly distributed in the coating. The surface roughness and void content of silicon coatings increase with an increase in the particle size of the powders. The microhardness and oxygen content of coatings decrease with an increase in the particle size. However, the size of silicon particles has little impact on the deposition efficiency of silicon under the same deposition conditions.  相似文献   

8.
This study investigated the electrochemical behavior of chromium nano-carbide cermet coating applied on Ti–6Al–4V and Co–Cr–Mo alloys for potential application as wear and corrosion resistant bearing surfaces. The cermet coating consisted of a highly heterogeneous combination of carbides embedded in a metal matrix. The main factors studied were the effect of substrate (Ti–6Al–4V vs. Co–Cr–Mo), solution conditions (physiological vs. 1 M H2O2 of pH 2), time of immersion (1 vs. 24 h) and post coating treatments (passivation and gamma sterilization). The coatings were produced with high velocity oxygen fuel (HVOF) thermal spray technique at atmospheric conditions to a thickness of 250 μm then ground and polished to a finished thickness of 100 μm and gamma sterilized. Native Ti–6Al–4V and Co–Cr–Mo alloys were used as controls. The corrosion behavior was evaluated using potentiodynamic polarization, mechanical abrasion and electrochemical impedance spectroscopy under physiologically representative test solution conditions (phosphate buffered saline, pH 7.4, 37 °C) as well as harsh corrosion environments (pH  2, 1 M H2O2, T = 65 °C). Severe environmental conditions were used to assess how susceptible coatings are to conditions that derive from possible crevice-like environments, and the presence of inflammatory species like H2O2. SEM analysis was performed on the coating surface and cross-section. The results show that the corrosion current values of the coatings (0.4–4 μA/cm2) were in a range similar to Co–Cr–Mo alloy. The heterogeneous microstructure of the coating influenced the corrosion performance. It was observed that the coating impedances for all groups decreased significantly in aggressive environments compared with neutral and also dropped over exposure time. The low frequency impedances of coatings were lower than controls. Among the coated samples, passivated nanocarbide coating on Co–Cr–Mo alloy displayed the least corrosion resistance. However, all the coated materials demonstrated higher corrosion resistance to mechanical abrasion compared to the native alloys.  相似文献   

9.
Yttria stabilized zirconia/alumina (YSZ/Al2O3) composite coatings were prepared from electrophoretic deposition (EPD), followed by sintering. The constrained sintering of the coatings on metal substrates was characterized with microstructure examination using electron microscopy, mechanical properties examination using nanoindentation, and residual stress measurement using Cr3+ fluorescence spectroscopy. The microstructure close to the coating/substrate interface is more porous than that near the surface of the EPD coatings due to the deposition process and the constrained sintering of the coatings. The sintering of the YSZ/Al2O3 composite coating took up to 200 h at 1250 °C to achieve the highest density due to the constraint of the substrate. When the coating was sintered at 1000 °C after sintering at 1250 °C for less than 100 h, the compressive stress was generated due to thermal mismatch between the coating and metal substrate, leading to further densification at 1000 °C because of the ‘hot pressing’ effect. The relative densities estimated based on the residual stress measurements are close to the densities measured by the Archimedes method, which excludes an open porosity effect. The densities estimated from the hardness and the modulus measurements are lower than those from the residual stress measurement and the Archimedes method, because it takes account of the open porosity.  相似文献   

10.
Pyrolytic carbon (PyC) was deposited on carbon nanotubes (CNTs) in order to modify them by introducing defects to their surface. The deposition of PyC was carried out at temperature between 800 and 1000 °C using propane as carbon source with or without a hydrogen carrier gas at low pressure of 20 kPa. The structure of PyC coatings was examined using transmission electron microscopy. The PyC coating could be distinguished from the original CNT walls due to the difference of the structure, with the coating showing a less orderly layer structure. When H2 was introduced during deposition, PyC coating started to form at 900 °C, and the deposition rate increased rapidly with increasing temperature. Without H2, PyC coating with a thickness of a few layers could be formed at temperatures between 800 and 900 °C in 10 min. The outmost layer of the PyC coating showed a structure of rough and curved carbon fragment. A layer-by-layer mechanism is proposed for the deposition consisting of alternating fragment formation (nucleation) and lateral growth to layer.  相似文献   

11.
Thick and soft a-C:H:Si coatings containing more than 45% hydrogen (thickness: 25–27 μm, hardness: 6 GPa, Young's Modulus 38 GPa and low ratio of sp3 bonds) were deposited by PACVD with a DC pulsed discharge on nitrided (duplex sample) and non-nitrided austenitic stainless steel (coated sample). After deposition, the chemical, microstructural and tribological properties were studied. Finally, the adhesion and the atmospheric corrosion resistance of a-C:H:Si coatings were also investigated.In pin-on-disk tests, the friction coefficient using an alumina pin of 6 mm in diameter as counterpart, under 0.59 GPa Hertzian pressure was 0.05 for the coated samples and 0.076 for the duplex samples. These values were more than one order of magnitude smaller than the friction coefficient of the nitrided sample without coating, which was around 0.65. In the coated samples, the wear loss could not be measured. In ball-on-disk tests under dry sliding conditions, the coatings were tested under different Hertzian pressures (1.29, 1.44 and 1.57 GPa) using a steel ball with a diameter of 1.5 mm as counterpart. Using a normal load of 9 N, the a-C:H:Si coating of the coated samples was broken and detached thus leading to a coefficient of friction of around 0.429. However, in contrast to that, the friction coefficient of the duplex samples remained stable and reached as maximum a value of 0.208.In abrasive tests, mass loss was undetectable in both duplex and coated samples. Furthermore it could be seen that the a-C:H:Si film showed only some smaller grooves and no severe damage or deformation. On the contrary, severe damage was observed in the only nitrided sample. With respect to adhesion, the critical load to break the coating was higher in the duplex sample (27 N) than in the only coated sample (16.3 N). By chemical analysis using the salt spray fog test, the duplex sample remained clean, but the coated sample failed and presented film delamination as well as general corrosion.  相似文献   

12.
Carbon vacuum arc was used to deposit 5–25 nm thick carbon coatings on single-walled carbon nanotube (SWCNT) networks. The SWCNT bundles thus embedded in conformal coatings maintained their optical transparency and electrical conductivity. Sheet resistances of the networks were measured during the vacuum arc deposition, revealing initially a 100-fold increase, followed by significant recovery after exposing the samples to an ambient atmosphere. Nanoindentation measurements revealed improved elasticity of the network after applying the carbon coating. Pristine SWCNT networks were easily deformed permanently, but a 20 nm carbon coating strengthened the nanostructure, resulting in a fully elastic recovery from a 20 μN load applied with a Berkovich tip. In nano-wear tests on selected areas, the coated SWCNT maintained its networking integrity after two passes raster scan at loads up to 25 μN. On the other hand, the pristine networks were badly damaged under a 10 μN scan load and completely displaced under 25 μN. Raman and electron energy loss spectroscopies indicated the carbon coating on bundles to be mainly sp2 bonded. Finite element modeling suggests that the low content of sp3 bonds may be due to heating by the intense ion flux during the plasma pulse.  相似文献   

13.
We report the fabrication of a robust graphene reinforced composite coating with excellent corrosion resistance by aqueous cathodic electrophoretic deposition (EPD). At optimum EPD conditions, a coating thickness of around 40 nm is obtained at 10 V and deposition time of 30 s. The surface morphological characterization are carried out by scanning electron microscopy which clearly shows reduced graphene oxide (rGO) with sizes ranging from 1 to 2 μm uniformly coated on the copper sheet. The composite coating is shown to significantly increase the resistance of the metal to electrochemical degradation. Tafel analysis confirms that the corrosion rate exhibited by composite coating is an order of magnitude lower than that of bare copper. It is expected that this simple EPD technique for producing a graphene-reinforced composite coating can open a new avenue especially for marine engineering materials where resistance to salt water is of paramount importance.  相似文献   

14.
Graphene, an atomically thin material with the theoretical surface area of 2600 m2 g−1, has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ∼2600 m2 g−1/N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate–plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600–40 m2 g−1) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m2 g−1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.  相似文献   

15.
The effect of nitrogen doping on the mechanical and electrical performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to 1 μm in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness and electrical resistance of the coatings decreased from 65 ± 4.8 GPa (3 kΩ/square) to 25 ± 2.4 GPa (10 Ω/square) with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the sp2 phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics.  相似文献   

16.
Urea formaldehyde (UF) microcapsules loaded with linseed oil and mercaptobenzothiazole (MBT) as core materials have been synthesized by in situ emulsion polymerization. The capsules were characterized by FTIR. Surface morphology of microcapsules was analyzed using scanning electron microscope. The thermal stability of the microcapsules is in the temperature range around 600 °C as confirmed by TG analysis. The open circuit potential measurements have shown that the coatings with microcapsules maintain the potential in the noble range (≈−0.390 V vs. SCE) while the coating without microcapsules exhibit potentials in the active range. EIS studies at the artificial defect area have shown that the coating containing microcapsules is able to protect steel in neutral media since the impedance values remained at 107 Ω cm2 even after 15 days exposure where as the coatings without microcapsules have lost their protection ability. The self healing ability of the coating containing microcapsules was studied by SVET.  相似文献   

17.
《Ceramics International》2017,43(15):11820-11829
Titanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings.The objective of the present research was to elaborate the technology of electrophoretic deposition (EPD) of nanohydroxyapatite (nanoHAp) coatings decorated with silver nanoparticles (nanoAg) and to investigate the mechanical and chemical properties of these coatings as determined by EPD voltage and the presence of nanoAg. The deposition of nanoHAp was carried out at two voltage values, 15 and 30 V. The decoration of nanoHAp coatings with nanoAg was carried out using the EPD process at a voltage value of 60 V and a deposition time of 5 min. The thickness of the undecorated coatings was found to be 2.16 and 5.14 µm for applied EPD voltages of 15- and 30-V, respectively. The release rate of silver nanoparticles into an artificial saliva solution increased with exposure time and EPD voltage. The corrosion current, between 1 and 10 nA/cm2, was significantly higher for undecorated nanoHAp coatings and close to that of the substrate for decorated nanoHAp coatings. The hardness of the undecorated nanoHAp coatings obtained at 15 and 30 V of EPD voltage attained 0.2245±0.036 and 0.0661±0.008 GPa, respectively. Resistance to nanoscratching was higher for thicker coatings. The wettability angle was lower for coatings decorated with nanoAg.  相似文献   

18.
The high hardness, exceptional high temperature stability, and oxidation resistance of bulk Si–B–C–N ceramics have led to the expectation that these materials will be good candidates for superior coating materials in high-temperature applications. In this study, SiBCN films were prepared using ion beam assisted sputter (IBAS) deposition, and the mechanical properties and thermal stabilities of the films at 600, 700, and 800 °C in air were investigated. In particular, the effects of the ion beam assist on the properties of the SiBCN films were examined. The SiBCN films were deposited on Si plates by sputtering a target composed of Si + BN + C using a 2-keV Ar+ ion beam. A low-energy N2+ and Ar+ mixed ion beam irradiated the samples during the sputter deposition. The Si content in the SiBCN films was controlled by changing the Si/(BN + C) ratio of the target. BCN films were also deposited for comparison. The composition and chemical bonding structure of the prepared films were investigated by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. We found that c-BN bonds were formed in the ion-assisted BCN film. The oxide layer thickness on the SiBCN films after thermal annealing decreased due to the IBAS deposition and an increase in the Si content. Ion-assisted SiBCN films annealed at 800 °C showed the highest hardness of 20 GPa.  相似文献   

19.
Nanostructured 13 wt%Al2O3 doped nanostructured 8 wt% yttria stabilized zirconia (nano-13AlYSZ) coatings were deposited by atmospheric plasma spray (APS). The isothermal oxidation and thermal cyclic life of the nano-13AlYSZ coating at 1100 °C were investigated. The isothermal oxidation test results indicate that the oxidation kinetics of nano-13AlYSZ follows a parabolic law. The parabolic rate constant at 1100 °C is calculated 0.04365 mg2 cm?4 h?1. The thermal cyclic life of nano-13AlYSZ coating is about 953 times at 1100 °C. The failure of the nano-13AlYSZ coating occurs at the interface between the nano-13AlYSZ coating and the thermal growth oxide (TGO). A finite element method is employed to analyze the stress distribution in the nano-13AlYSZ coating. The results show that maximum stresses occur at the top coat/TGO interface.  相似文献   

20.
Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 ± 0.39 MPa (pure HA) to 2.75 ± 0.38 MPa (2 wt.% GO/HA) and 3.3 ± 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80–90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号