首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combustive oxidation of volatile organic compounds (VOCs), such as propyl alcohol, toluene and cyclohexane, were studied. The combustion was catalyzed by nanoparticles of La1−xSrxCoO3 (x = 0, 0.2) perovskites prepared by a co-precipitation method. The results showed high activities of the perovskite catalysts. Compared to LaCoO3, in particular, La0.8Sr0.2CoO3 was much higher in catalytic ability. The total oxidation of VOCs followed the increasing order: cyclohexane < toluene < propyl alcohol. The T99% of cyclohexane was 40 °C lower than that of toluene, which appeared to be determined by the bond strengths of the weakest C–H and C–C bonds. The 100-h stability experiments showed that La1−xSrxCoO3 (x = 0, 0.2) perovskite was highly stable.  相似文献   

2.
This study reports the successful preparation of a single-phase cubic (Ba0.5Sr0.5)0.8La0.2CoO3?δ perovskite by the citrate–EDTA complexing method. Its crystal structure, thermogravimetry, coefficient of thermal expansion, electric conductivity, and electrochemical performance were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Its coefficient of thermal expansion shows abnormal expansion at 300 °C, which is associated with the loss of lattice oxygen. The maximum conductivity of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ electrode is 689 S/cm at 300 °C. Above 300 °C, the electronic conductivity of (Ba0.5Sr0.5)0.8La0.2CoO3?δ decreases due to the formation of oxygen vacancies. The charge-transfer resistance and gas phase diffusion resistance of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ–Ce0.8Sm0.2O1.9 composite cathode are 0.045 Ω cm2 and 0.28 Ω cm2, respectively, at 750 °C.  相似文献   

3.
The synthesis of fine powders of LaCrO3 and its solid solutions doped with calcium under hydrothermal conditions and the sintering of these powders were investigated. Precursor alkaline coprecipitated lanthanum chromite gels with three different compositions: LaCrO3, La0.9Ca0.1CrO3 and La0.8Ca0.2CrO3, were processed under hydrothermal conditions at low temperatures (350–425 °C), for a reaction time between 30 and 120 min. Powders of a single phase with orthorhombic structure of LaCrO3, La0.9Ca0.1CrO3 and La0.8Ca0.2CrO3 were obtained at a temperature as low as 350, 400 and 425 °C, respectively, for a short reaction interval of 1 h. SEM and TEM micrographs showed that particles with an irregular morphology and an average particle size of 300 nm, were mainly obtained under hydrothermal conditions. The powders were pressed by cold isostatic pressing at 200 MPa, and then sintered in air at a temperature range of 1200–1500 °C for various intervals (1 to 5 h). A maximum apparent density of 97.7% was achieved on specimens with high calcium content, La0.8Ca0.2CrO3, at 1400 °C for 5 h. The average grain size measured on the sintered specimens was 6 μm.  相似文献   

4.
Apatite-type silicates are considered as promising electrolytes for solid oxide fuel cells (SOFC). However more studies on the chemical compatibility of these materials with common SOFC electrodes are required. Here, we report the synthesis of single phase La9Sr1Si6O26.5 composition by reactive sintering at 1650 °C for 10 h. Fully dense pellets showed very high oxide-anion conductivity, 25 mS cm?1 at 700 °C. Furthermore, the chemical compatibility of La9Sr1Si6O26.5 with some selected cathode materials has also been investigated. The lowest reaction temperatures were determined to be 1100 °C, 1000 °C and 900 °C for La0.8Sr0.2MnO3?δ, La2Ni0.8Cu0.2O4 and La0.6Sr0.4Co0.8Fe0.2O3, respectively. The segregation of minor amounts of SiO2 seems to be a key limiting factor that must be overcome. Finally, these cathode materials were deposited over dense oxy-apatite pellets and the area specific resistances in symmetrical cells were determined. These values, at 700 °C, were 14.4 and 2.6 Ω cm2 for La0.8Sr0.2MnO3?δ and La0.6Sr0.4Co0.8Fe0.2O3?δ, respectively. Furthermore, the area specific resistances are notably improved 0.6 Ω cm2 when a 50 wt.% composite of La0.6Sr0.4Co0.8Fe0.2O3?δ and Ce0.8Gd0.2O1.9 is used.  相似文献   

5.
Nano-powders of La0.6Sr0.4CoO3?x (LSC) and Sm0.5Sr0.5CoO3?x (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) with La(Sr)Ga(Mg)O3?x (LSGM) as the electrolyte, were synthesized by low-temperature sol–gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by X-ray diffraction. Sol–gel powders calcined at 550–1000 °C consisted of a number of phases. Single perovskite phase La0.6Sr0.4CoO3?x or Sm0.5Sr0.5CoO3?x powders were obtained at 1200 °C and 1300 °C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average crystallite size of the powders was ~15 nm after 700 °C calcinations and slowly increased to 70–100 nm after heat treatments at 1300–1400 °C.  相似文献   

6.
Perovskites La1−xCaxAlyFe1−yO3−δ (x, y = 0 to 1) were prepared by high-temperature solid-state synthesis based on mixtures of oxides produced by colloidal milling. The XRD analysis showed that perovskites La0.5Ca0.5AlyFe1−yO3−δ with a high Fe content (1  y = 0.8–1.0) were of orthorhombic structure, perovskites with a medium Fe content (1  y = 0.8–0.5) were of rhombohedral structure, and perovskite with the lowest Fe content (1  y = 0.2) were of cubic structure. Thermally programmed desorption (TPD) of oxygen revealed that chemical desorption of oxygen in the temperature range from 200 to 1000 °C had proceeded in the two desorption peaks. The low-temperature α-peak (in the 200–550 °C temperature range) was brought about by oxygen liberated from oxygen vacancies; the high-temperature β-peak (in the 550–1000 °C temperature range) corresponded to the reduction of Fe4+ to Fe3+. The chemidesorption oxygen capacity increased with increasing Ca content and decreased with increasing Al content in the perovskites. The Al3+ ions restricted, probably for kinetic reasons, the reduction of Fe4+ and the high-temperature oxygen desorption associated with it.  相似文献   

7.
How to obtain dense La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) electrolyte at low sintering temperature (<1300 °C) is a challenge to improve solid oxide fuel cell (SOFC) performance at intermediate operation temperature. In this study, a double-layer design method for vacuum cold spray (VCS) prepared-LSGM electrolyte assisted with two-step sintering at a low temperature was proposed. The sintering behavior of VCS deposited LSGM layers at 1200 °C was investigated. The LSGM layers became denser in most regions except the appearance of some cracks. Subsequently, the effect of a second LSGM layer on the sintered top layer was studied to block cracks. Results showed that the co-sintered layer with a thickness of approximately 5 μm presented a maximum open circuit voltage of ∼0.956 V at 650 °C and a maximum power density of 592 mW/cm2 at 750 °C. Result indicates that the sintering assisted VCS is a promising method to prepare the LSGM electrolyte applied in intermediate temperature SOFCs.  相似文献   

8.
M-type strontium ferrites, Sr0.8La0.2Fe12O19 have been synthesized by conventional ceramic process. The effects of lanthanum addition and sintering temperature on microstructures and magnetic properties of SrFe12O19 and Sr0.8La0.2Fe12O19 samples were investigated. Microstructural analysis of the SrFe12O19 and Sr0.8La0.2Fe12O19 specimens, sintered at different temperatures revealed that average grain sizes of SrFe12O19 ferrites were larger than that of Sr0.8La0.2Fe12O19 ferrite and increased with increasing sintering temperature. The X-ray diffraction (XRD) results confirmed the strontium hexagonal ferrite phase of SrFe12O19 and Sr0.8La0.2Fe12O19 compounds. A maximum coercivity value of 4850 Oe and maximum saturation magnetization value of 102 emu/g were obtained for the SrFe12O19 ferrite sintered at 1150 °C and for the SrFe12O19 and Sr0.8La0.2Fe12O19 ferrites sintered at 1300 °C, respectively. The remanence (Mr) of Sr0.8La0.2Fe12O19 sample sintered at 1200 °C possesses the maximum value of 60 emu/g.  相似文献   

9.
Bi0.85La0.15FeO3 (BLFO015) thin films were deposited by the polymeric precursor solution on La0.5Sr0.5CoO3 substrates. For comparison, the films were also deposited on Pt bottom electrode. X-ray diffraction data confirmed the substitutions of La into the Bi site with the elimination of all secondary phases under a substitution ratio x = 15% at a temperature of 500 °C for 2 h. A substantial increase in the remnant polarization (Pr) with La0.5Sr0.5CoO3 bottom electrode (Pr  34 μC/cm2) after a drive voltage of 9 V was observed when compared with the same film deposited on Pt substrate. The leakage current behavior at room temperature decreased from 10?8 (Pt) to 10?10 A/cm2 on (La0.5Sr0.5CoO3) electrode under a voltage of 5 V. The fatigue resistance of the Au/BLFO015/LSCO/Pt/TiO2/SiO2/Si (1 0 0) capacitors with a thickness of 280 nm exhibited no degradation after 1 × 108 switching cycles at a frequency of 1 MHz.  相似文献   

10.
《Ceramics International》2017,43(8):6487-6493
Perovskite oxides LaxSr1–xCo0.9Sb0.1O3–δ (LSCSbx, x=0.0–0.8) are investigated as IT–SOFC cathodes supported with La0.9Sr0.1Ga0.8Mg0.2O3–δ (LSGM) electrolyte. All LSCSbx oxides have a tetragonal distorted perovskite structure with s.g. P4/mmm, while a La2Co2O5 impurity phase was observed within La doping levels at x=0.6–0.8. The LSCSb0.4 has a good chemical compatibility with LSGM electrolyte for temperatures up to 1050 °C. XPS examinations indicate the existence of Co3+/Co4+ mixed valence states in LSCSbx. The conductivity increases with La doping and the LSCSbx with x=0.4 exhibits the highest electrical conductivity (e.g., 673–1637 S cm−1 at 300–850 °C). The thermal expansion coefficient (TEC) decreases from 25.89×10–6 K–1 for x=0.0 to 18.5×10–6 K–1 for x=0.6 at 30–900 °C. Among the LSCSbx compositions, the LSCSb0.2 exhibits the lowest polarization resistance (Rp), which is merely 0.069 Ω cm2 at 700 °C. The maximum power density of the cell with LSCSb0.2 cathode on 300 µm thick LSGM electrolyte attains 564 mW cm–2 at 850 °C, which is higher than that of SrCo0.9Sb0.1O3–δ (SCSb) cathode. All of the results indicate that LSCSb0.2 is a promising material for application in IT–SOFCs cathodes.  相似文献   

11.
The (1 ? y)La1?xSmx(Mg0.5Sn0.5)O3yCa0.8Sm0.4/3TiO3 ceramics were prepared by the conventional solid-state method. The X-ray diffraction patterns of the La1?xSmx(Mg0.5Sn0.5)O3 ceramics revealed that La1?xSmx(Mg0.5Sn0.5)O3 is the main crystalline phase, which is accompanied by a little La2Sn2O7 as the second phase. An apparent density of 6.59 g/cm3, a dielectric constant (?r) of 19.9, a quality factor (Q × f) of 70,200 GHz, and a temperature coefficient of resonant frequency (τf) of ?77 ppm/°C were obtained when the La0.97Sm0.03(Mg0.5Sn0.5)O3 ceramics were sintered at 1500 °C for 4 h. The temperature coefficient of resonant frequency (τf) increased from ?77 to +6 ppm/°C as y increased from 0 to 0.6 when the (1 ? y)La0.97Sm0.03(Mg0.5Sn0.5)O3yCa0.8Sm0.4/3TiO3 ceramics were sintered at 1500 °C for 4 h. 0.425La0.97Sm0.03(Mg0.5Sn0.5)O3–0.575Ca0.8Sm0.4/3TiO3 ceramic that was sintered at 1500 °C for 4 h had a τf of ?3 ppm/ °C.  相似文献   

12.
《Ceramics International》2015,41(8):9686-9691
A novel solid state reaction was adopted to prepare Sm0.2Ce0.8O1.9 (SDC) powder. A mixed oxalate Sm0.2Ce0.8(C2O4)1.5·2H2O was synthesized by milling a mixture of cerium acetate hydrate, samarium acetate hydrate, and oxalic acid for 5 h at room temperature. An ultra-fine SDC powder with the primary particle size of 5.5 nm was obtained at 300 °C. The ultra-low temperature for the formation of SDC phase was due to the atomic level mixture of the Sm3+ and Ce4+ ions. The crystal sizes of SDC powders at 300 °C, 550 °C, 800 °C, and 1050 °C were 5.5 nm, 11.4 nm, 24.1 nm and 37.5 nm, respectively. The sintering curves showed that the powder calcined at lower temperature was easier to be sintered owning to its smaller particle size. A solid oxide electrolytic cell (SOEC), comprising porous La0.8Sr0.2Cu0.1Fe0.9O3−δ (LSCF) for substrate, LSCF–SDC for active electrode, SDC for electrolyte, and LSCF–SDC for symmetric electrode, was fabricated by dip-coating and co-sintering techniques. An extremely dense SDC film with the thickness of 20 μm was obtained at only 1200 °C, which was about 100–300 °C lower than the literatures׳ reports. The designed SOEC was proved to work effectively for decomposing NO (3500 ppm, balanced in N2), 80% NO can be decomposed at 600 °C.  相似文献   

13.
14.
The densification, microstructure and phase evolution of near stoichiometric, Co-excess and Co-deficient perovskite La1−xMxCoO3−δ (M=Ca, Sr; x=0, 0.2) powders have been investigated by electron microscopy and powder X-ray diffraction. Sub-micron powders were prepared from nitrate precursors using the glycin-nitrate and the EDTA methods. The sintering temperature was observed to decrease with Ca or Sr substitution. Dense materials with grain size in the order of 3–5 μm have been obtained at 1200°C for near stoichiometric powders. Considerable grain growth was observed at higher sintering temperatures. The presence of other crystalline phases in addition to the perovskite due to Co-excess/-deficiency considerably affects the microstructure and acts as grain growth inhibitors by grain boundary pinning. The volume fraction of secondary phases is particularly large in the case of Co-deficient LaCoO3 due to the formation of La4Co3O10. In non-stoichiometric La0.8Ca0.2CoO3, a liquid phase consisting mainly of CaO and CoO was observed at 1400°C causing exaggerated grain growth. Considerable pore coarsening was observed in Co-excess La0.8Ca0.2CoO3 at 1350°C. The present investigation demonstrates the importance of controlling the stoichiometry of LaCoO3 based ceramics in order to obtain dense materials with well defined microstructure.  相似文献   

15.
Sm0.2Ce0.8O1.9 (SDC)–embedded Sm0.5Sr0.5CoO3?δ (SSC) composite fibers were successfully fabricated by electrospinning using commercial SDC nanopowders and an SSC precursor gel containing polyvinyl alcohol (PVA) and hydrated metal nitrate. After calcination of the composite fibers at 800 °C, the fibers of 300 ± 80 nm in diameter with a well-developed SSC cubic-perovskite structure and fluorite SDC were successfully obtained. An anode-supported single cell composed of NiO–Gd0.2Ce0.8O1.9 (GDC)/GDC/SSC–SDC fibers was fabricated, and its electrochemical performance was evaluated. The maximum power densities were 1250 and 360 mW/cm2 at 700 and 550 °C, respectively, which we ascribe to the excellent properties of the SSC fibers with embedded SDC particles such as a highly porous and continuous structure promoting mass transport and a charge transfer reaction.  相似文献   

16.
《Ceramics International》2015,41(8):9521-9526
The influence of sintering temperature on the microwave dielectric properties and microstructure of the (1−y)Zn2SnO4yCa0.8Sr0.2TiO3 ceramic system were investigated with a view to their application in microwave devices. A (1−y)Zn2SnO4yCa0.8Sr0.2TiO3 ceramic system was prepared by the conventional solid-state method. The X-ray diffraction patterns of the 0.85Zn2SnO4–0.15Ca0.8Sr0.2TiO3 ceramic system did not significantly vary with sintering temperature. A dielectric constant of 9.6, a quality factor (Q×f) of 15,900 GHz, and a temperature coefficient of resonant frequency of −4 ppm/°C were obtained when the 0.85Zn2SnO4–0.15Ca0.8Sr0.2TiO3 ceramic system was sintered at 1175 °C for 4 h.  相似文献   

17.
Semiconducting oxide gas sensors based on La0.8Sr0.2Fe1?xCuxO3 (x = 0, 0.05, 0.10) (LSF, LSFC05, and LSFC10, respectively) were prepared by screen-printing for humidity detection at room temperature.The thick-films were heat-treated at 800, 900 and 1000 °C for 1 h and all the compositions proved to be effective in humidity sensing and presented a good reproducibility between several measurements. However, the best results were obtained with LSFC10 fired at 800 °C which showed a detection limit of 15% relative humidity and a maximum sensor response of about 87%, higher than the previous results. Copper addition to lanthanum strontium ferrites proved to be effective in lowering the sensors’ detection limit.  相似文献   

18.
《Ceramics International》2017,43(16):13653-13660
The effects of a Cu-based additive and nano-Gd-doped ceria (GDC) sol on the sintering temperature for the construction of solid oxide cells (SOCs) were investigated. A GDC buffer layer with 0.25–2 mol% CuO as a sintering aid was prepared by reacting GDC powder and a CuN2O6 solution, followed by heating at 600 °C. The sintering of the CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy at temperatures ranging from 1000 to 1400 °C. The sintering temperature of the CuO–GDC buffer layer was decreased from 1400 °C to 1100 °C by adding the CuO sintering aid at levels exceeding 0.25 mol%. The ionic conductivity of the CuO–GDC electrolyte was maximized at 0.5 mol% CuO. However, the addition of CuO did not significantly affect the activation energy of the GDC buffer layer. Buffer layers with CuO-added GDC or nano-GDC sol-infiltrated GDC were fabricated and tested in co-sintering (1050 °C, air) with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). In addition, SOC tests were performed using button cells (active area: 1 cm2) and five-cell (active area: 30 cm2/cell) stacks. The button cell exhibited the maximum power density of 0.89 W cm−2 in solid oxide fuel cell (SOFC) mode. The stack demonstrated more than 1000 h of operation stability in solid oxide electrolysis cell (SOEC) mode (decay rate: 0.004%/kh).  相似文献   

19.
Infiltration is a method, which can be applied for the electrode preparation. In this paper oxygen electrode is prepared solely by the infiltration of La0.6Sr0.4Co0.2Fe0.8O3‐δ (LSCF) into Ce0.8Gd0.2O2-δ (CGO) backbone. The use a polymer precursor as an infiltrating medium, instead of an aqueous nitrate salts solution is presented. It is shown that the polymer forms the single-phase perovskite at 600 °C, contrary to the nitrates solution. As a result, obtained area specific resistance (ASR) is lowered from 0.21 Ω cm2 to 0.16 Ω cm2 at 600 °C. More than 35% of LSCF in the oxygen electrode decreases the performance.  相似文献   

20.
《Ceramics International》2016,42(6):7270-7277
La0.9Sr0.1Ga0.8Mg0.2O3−δ solid electrolytes were consolidated by fast firing aiming to investigate the effects of the sintering method on densification, microstructure and ionic conductivity. Powder mixtures were prepared by solid state reaction at 1250 and 1350 °C for 12 h, and fast fired at 1450 and 1500 °C temperatures for 5 and 10 min. The content of impurity phases was found to be quite low with this sintering method. Relatively high density (>90% of the theoretical value) and low porosity (<1.5%) were readily obtained for powder mixtures calcined at 1250 °C. The activation energy for conduction was approximately 1 eV. Specimens fast fired at 1450 °C for 10 min with a mean grain size of 2.26 µm reached the highest value of total ionic conductivity, 22 mS cm−1, at 600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号