首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CBN车刀前刀面微沟槽结构磨削及其对干切削温度的影响   总被引:2,自引:0,他引:2  
车刀前刀面的微沟槽结构可以改善切削性能,但是,超硬的CBN车刀表面微加工极为困难。因此,提出采用微磨削技术在CBN前刀面加工出深度为54μm的微沟槽结构,可实现钢的干切削。采用金属基的#600金刚石砂轮V形尖端沿着与切削刃成不同夹角方向在CBN车刀的前刀面上加工出微沟槽结构;通过升温试验分析前刀面温度与车刀尖端温度的相关性;对45钢进行干切削试验,研究微沟槽结构特征和切削条件对干切削温度的影响。结果表明,CBN车刀前刀面可被加工出规则和光滑的微沟槽结构。平行微沟槽结构和倾斜微沟槽结构比垂直微沟槽有更快的排热速度,可起到散热作用。前刀面的温度与车刀尖端的温度有极好的相关性,所以它可用于预测干切削的刀尖温度。可以证明,平行微沟槽结构车刀可以比传统平面车刀降低干切削温度约18%。但是,垂直和倾斜微沟槽结构车刀会产生更大的干切削温度,这是因为它们的微沟槽结构改变了切削刃的形状,造成刀具磨损。在较大切除率的干切削中,平行微沟槽结构CBN车刀能够更大幅度地降低刀尖的切削温度,造成非常小的刀具磨损。.  相似文献   

2.
金刚石车削技术,在宇航、电子、光学、仪器仪表行业中得到了广泛的应用。我所大量铝合金、铜等材料的零件精磨无法达到技术要求。为了提高加工精度与表面质量,近年来,我们对金刚石车刀及其车削技术进行了系统的工艺试验和研究。目前车削有色金属零件内、外圆表面粗糙度已稳定在Rz0.4μm以下。下面仅对初步的研究结果作简要介绍,供同行参考。  相似文献   

3.
我国模具行业,模具精度将越来越高。10年前,精密模具的精度一般为5μm,现在已达2~3μm。不久,1μm精度的模具将上市。随着零件微型化受精度要求的提高,有些模具的加工精度公差将要求在1μm以下,这就要求发展超精加工。  相似文献   

4.
《机械》2005,32(8):i0001-i0001
10年前,精密模具的精度一般为5μm,现在已达2-3μm。不久,1μm精度的模具将上市。随着零件微型化及精度要求的提高,有些模具的加工精度公差就要求在1μm以下,这就要求发展超精加工。  相似文献   

5.
介绍了碳化硅质光学镜面的光学加工流程和加工手段,分析了碳化硅光学镜面的光学加工过程各个步骤中所应用的磨料和加工方法。利用自主研制的非球面数控加工中心,探索一种新型轮式研磨抛光技术,解决了中小口径非球面元件的数控加工问题,形成比较规范的中小口径碳化硅非球面元件加工方法,并应用到Ф124mm口径两面均为非球面的碳化硅元件的加工中,工件最终加工精度为第一面:0.761λ(PV)、0.059λ(RMS)(λ=0.6328μm);第二面:0.834λ(PV)、0.089λ(RMS)(λ=0.6328μm),满足了设计要求。  相似文献   

6.
目前工业界对高精度微结构功能表面玻璃元件,比如作为高性能二极管激光器准直透镜关键元件的圆柱槽阵列微结构功能表面玻璃元件的需求日趋增加,而其微结构表面质量的优劣也会直接影响激光器输出功率的大小。该类元件能否很好的实现其特定的光学功能取决于玻璃模压用具有微结构表面的模具(如碳化硅陶瓷等)最终加工质量,但由于碳化硅等陶瓷的超硬材料属性导致其微结构表面在精密磨削后还需要进行后续的抛光加工以达到使用精度要求。因此针对精密磨削后的无压烧结碳化硅(SSi C)微结构表面展开原位化学机械抛光(CMP)试验,试验结果表明,微结构表面粗糙度Ra及面形精度PV由磨削后的71.8 nm和2.14μm降低到了抛光后的7.7 nm和0.46μm;抛光后微结构尖角处形貌完整无破损,但尖角圆弧半径R有所扩大,由磨削后的8.082μm增大到9.294μm;微结构亚表面裂纹深度经抛光后由磨削后的5μm左右降低至1μm左右,从而有效地提高了模具精度。  相似文献   

7.
李应选 《云光技术》1999,31(1):19-22
在塑料透镜成形技术中模具起着重要的作用。本文围绕模具的着急零型芯,简要介绍了它的设计及其材料的选择和处理;重点叙述了在CNC超精密两轴机床上车制型芯模腔光学镜面的技术和所使用的UPC-R金刚石车刀;最后分析了UPC-R金刚石车刀圆弧切削刃半径R的判定误差对车制表面形状精度的影响。  相似文献   

8.
针对难加工金属材料表面阵列非贯穿型微沟槽的高效高质量加工难题,提出一种场域离散脉冲电解加工方法,所加工沟槽具有表面质量好、尺寸微小、槽数多、沟槽前后非贯穿的特点。使用绝缘栅栏隔板作为活动掩模板对各微沟槽加工区进行离散,同时遮蔽非加工区,从而实现流场隔离和非加工区电场屏蔽等效果,有效提高沟槽的加工稳定性、精度和一致性。通过设计专用夹具,对影响加工精度的关键因素进行了单因素工艺实验研究,并利用Comsol Multiphysics软件对电解加工的流场和电场进行了仿真分析。仿真和试验结果显示:场域离散加工方法的流场和电场都比传统的掩膜电解加工、电解转印加工好。成功地在1min内加工出9条宽538.76μm,深25.78μm,过切量为19.38μm的阵列微沟槽,证实了该方法的有效性。采用短加工时间、低脉冲电压幅值、高脉冲频率、小脉冲占空比等工艺参数,有利于提高沟槽的加工精度。通过场域离散电解加工技术,可以实现对非贯穿型微沟槽的高效率、高质量、低成本加工。  相似文献   

9.
国内模具日趋精密我国模具行业,模具精度将越来越高。10年前,精密模具的精度一般为5μm,现在已达2~3μm。不久,1μm精度的模具将上市。随着零件微型化及精度要求的提高,有些模具的加工精度公差将要求在1μm以下,这就要求发展超精加工。专家认为,我国模具行业要进一步发展多功能复合模具。一套多功能模具除了冲压成型零件外,还担负叠压、攻丝、铆接和锁紧等组装任务。通过这种多功能的模具生产出来的不再是成批零件,而是成批的组件,如触头与支座的组件、各种微小电机、电器及仪表的铁芯组件等。多色和多材质塑料成形模具可缩短产品的生产周…  相似文献   

10.
为了获得优化的单晶硅激光辅助超精密切削工艺,探究切削加工后单晶硅元件的表面特性,采用正交实验方法对单晶硅的激光原位辅助单点金刚石切削工艺参数进行优化,并对切削加工单晶硅表面质量、面形精度、残余应力和光学透过率等表面特性进行了测量与分析。通过正交实验数据的表面粗糙度方差分析和信噪比分析,获得的优化工艺参数组合为主轴转速为1 500 r/min、进给速率为5 mm/min、切削深度为3 μm、激光功率为4.5 W。采用上述工艺参数加工的165 mm口径单晶硅非球面光学元件的表面粗糙度和面形精度PV分别为2.74 nm和0.52 μm。激光辅助切削加工后的单晶硅表面存在(-1 760.8±362.1) MPa的残余压应力。激光辅助超精密切削加工的单晶硅光学元件在3~5 μm中红外波段镀膜前后的透过率分别为55%和98%,折射率为3.43。实验结果表明,激光辅助超精密切削技术可作为单晶硅光学元件的半精加工或最终精加工工序,以提升复杂面形单晶硅元件的制造效率。  相似文献   

11.
我国塑料模具行业发展日趋大型化精度越来越高   总被引:1,自引:0,他引:1  
《工具技术》2008,42(6)
目前,我国塑料模具行业日趋大型化,而且精度将越来越高。10年前,精密塑料模具的精度一般为5μm,现在已达2—3μm。不久,1μm精度的模具将上市。随着零件微型化及精度要求的提高,有些模具的加工精度公差就要求在1μm以下,这就要求发展超精加工。  相似文献   

12.
φ124 mm口径碳化硅质非球面镜面数控研抛技术研究   总被引:6,自引:4,他引:2  
介绍了碳化硅质光学镜面的光学加工流程和加工手段,分析了碳化硅光学镜面的光学加工过程各个步骤中所应用的磨料和加工方法.利用自主研制的非球面数控加工中心,探索一种新型轮式研磨抛光技术,解决了中小口径非球面元件的数控加工问题,形成比较规范的中小口径碳化硅非球面元件加工方法,并应用到φ124 mm口径两面均为非球面的碳化硅元件的加工中,工件最终加工精度为第一面:0.761 λ(PV)、0.059λ(RMS)(λ=0.632 8μm);第二面:0.834 λ(PV)、0.089 λ(RMS)(λ=0.632 8μm),满足了设计要求.  相似文献   

13.
匀光元件具有优良的光束扩散性能,被广泛应用于投影、照明及成像系统,抛光可有效去除匀光模具表面刀纹从而提升性能,但现有的抛光方法通常难以在保持微结构面形精度的同时提升表面质量。为解决上述问题,提出了一种用于阵列微结构模具的高性能非接触仿形抛光方法,研究了加工间隙和工具转速对材料去除的影响,分析了模具表面质量及面形变化。最后,通过打光测试表征了不同加工方法与元件性能的关系。结果表明,抛光对匀光元件性能提升作用显著,提出的高性能非接触仿形抛光方法可大幅提高塑件匀光性能。抛光后,模具表面粗糙度由初始的164.2 nm Ra下降至8.1 nm Ra,形状精度误差小于0.8μm,同时刀纹和毛刺被有效去除。塑件匀光亮度提升了40.4%,匀光均匀度提升了67.1%,塑件匀光性能显著提升。提出的非接触仿形抛光方法可以为高性能光学微结构元件的制造提供技术支撑。  相似文献   

14.
针对不同口径光学元件加工阶段的在线测量需求,提出了用于在线检测的紧凑型瞬态干涉测量系统。系统引入偏振相机来实现波前瞬态移相干涉测量以降低外界扰动影响。同时结合基于位形优化算法的子孔径拼接技术,可降低对运动扫描平台精度要求,并实现大口径光学元件全口径检测。为验证所提出测量系统的可行性,分别对金刚石车削机床对中工具和大口径球面镜进行在线检测和子孔径拼接测量,结果表明,与ZYGO干涉仪检测结果相比,两者对应的均方根值偏差的绝对值分别为0.003与0.007μm。同时该系统具有布局结构紧凑和对外界环境扰动不敏感的特点,可很好地满足复杂环境在线安装检测应用要求,在金刚石车削机床对中工具的在线调整和不同口径光学元件在线检测中具有较广泛的应用。  相似文献   

15.
气囊抛光过程的运动精度控制   总被引:1,自引:0,他引:1  
针对用于球面、非球面光学元件超精密光学加工的气囊抛光技术,提出了一套控制抛光过程中气囊运动精度的方法。该方法通过控制加工单元的温度,保证抛光过程中设备运动精度达到50μm;使用坐标传递法,使检测数据二维方向对准不确定度达到0.30~0.70mm。另外,基于磨头去除量估计与反馈修正法,提高精抛过程面形误差收敛效率。最后,通过磨头探测校准法,将磨头与加工工件法向位置精度提高至10μm。实际抛光实验显示:使用运动精度控制法在280mm口径的平面精密抛光中获得的面形加工精度为0.8nm(RMS),在160mm口径的凹球面精密抛光中获得的面形加工结果为1.1nm(RMS),实现了超高精度面形修正的目的,为超高精度球面、非球面光学元件加工提供了一套行之有效的方法。该方法同样适用于其他接触式小磨头数控抛光方法。  相似文献   

16.
本文叙述了为光学玻璃元件球面磨削和研磨专门设计的磨床所用之金刚石磨具的发展。对这些光学元件要求精度的水平非常高。报导了实际获得最佳结果的加工参数和金刚石磨具规格的选择。  相似文献   

17.
技术转让     
有色金属镜面车削工艺及其设备改造利用金刚石车刀在精化的CMZ 25车床上,加工直径10~80mm,长度50~100mm的工件,外圆和端面粗糙度为R_00.012,圆度在0.6μm以内。可提供机床精化资料、刀具及切削用量等北京2559信箱环面蜗轮副的加工技术利用63或65车床,安装专用工装加工蜗杆;在滚齿机上利用双飞刀和球面蜗轮滚刀加工蜗轮。提供工艺方法和设计资料。  相似文献   

18.
陶瓷飞行体的微沟槽结构曲面精密磨削与减阻性能   总被引:3,自引:0,他引:3  
为减小飞行阻力和增强雷达散射,提出采用精密磨削和微细磨削组合加工工艺在陶瓷飞行体表面加工出曲面微沟槽结构。首先,利用精密修整后的金刚石砂轮圆环形端线沿数控曲线插补轨迹将陶瓷加工成光滑曲面,然后利用微细修整成角度为60°的金刚石砂轮V形尖端在曲面上沿飞行体轴向方向加工出微沟槽结构,最后通过风动试验分析不同曲面结构对空气阻力的影响。磨削试验结果显示,精密磨削和微细磨削组合加工可在高度32 mm、直径30 mm和表面粗糙度0.262?m的陶瓷曲面上加工出深度为578~581?m、角度为61.56°和尖端半径为48?m的微沟槽结构,其深度误差仅为3?m,曲面加工的平均形状误差为142?m,加工精度可控制在0.5%以内。此外,加工后的陶瓷表面粗糙度主要受砂轮粒度和磨削工艺的影响。风动试验结果表明:微沟槽结构曲面分别比光滑和粗糙曲面减小轴向阻力约36%和42%,也比光滑曲面减小侧面阻力约39%。因此,陶瓷飞行体的光滑曲面被加工出规则可控的微沟槽结构可以减小飞行阻力。  相似文献   

19.
光学脆性材料的金刚石切削加工   总被引:2,自引:4,他引:2  
重点对脆性材料的超精密研磨、抛光加工技术及超精密磨削加工技术和超精密切削加工技术进行了分析研究。分析表明,硬脆材料光学元件主要应进行超精密研磨、抛光及超精密磨削加工;软脆材料光学元件主要应进行金刚石切削加工。对软脆材料金刚石切削进行了试验设计,指出了光学脆性材料的金刚石切削加工过程不同于金属加工过程,通过控制切削条件可以实现脆性材料塑性域加工,提高光学脆性材料的表面加工质量。  相似文献   

20.
杨斌  黄小娣  黄永程 《机械传动》2021,45(10):72-76
沟槽砂轮相对于传统砂轮具有许多优势,但其砂轮轮廓的误差对加工精度存在一定的影响.因此,提出了一种用于数控磨床的砂轮廓面修形机械手,并设计了一种简单、经济的机械手对准测量与静态误差补偿方法.该机械手由水平导轨和垂直导轨两个直线导轨组成;导轨由一个高精度滚珠丝杠驱动,该滚珠丝杠与带有光学编码器反馈的直流伺服马达相连;垂直导轨上装有单点金刚石修整刀具.对准测量方法采用了一个千分表和磨床的数字读数.通过测量机械手形成的轮廓误差,对该误差补偿方法进行了实验验证.结果表明,静态误差补偿方法可将砂轮廓形的轮廓误差减少40%,降低到±10μm的范围内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号