首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用详细的化学反应动力学模型研究了CO在H2/Cl2/O2/N2混合气体中的氧化反应,考查了混合气体中氯和氢的量之比、反应温度、停留时间和氧浓度等参数对CO氧化的影响,并用敏感性分性方法研究了不同条件下氯对CO氧化的抑制机理.结果表明,减小混合气体中氯和氢的量之比或提高反应温度是促进CO氧化的主要方法.在800 ℃以下氯对CO氧化的抑制作用主要表现为Cl+HO2HCl+O2,进而减少了通过H+HO2OH+OH生成的OH.在900 ℃以上,氯的抑制作用主要通过反应HCl+OHH2O+Cl减小OH的浓度,同时Cl+COClCO等的反应也减缓了CO2的生成速率;通过反应HCl+OOH+Cl,减轻了氯对CO氧化的抑制作用.  相似文献   

2.
封闭空间瓦斯爆炸过程的反应动力学分析   总被引:1,自引:0,他引:1  
为了获取瓦斯爆炸过程中反应动力学参数,通过修改化学动力学计算软件CHEMKINIII中的SENKIN程序包,采用甲烷燃烧的化学动力学详细反应机理(包括16种组分、41个反应),建立了定容弹中瓦斯爆炸过程的计算模型.利用该模型对瓦斯爆炸过程中温度、压力及反应物浓度的变化趋势进行了模拟分析,同时通过对瓦斯爆炸详细反应机理的敏感性分析,找出了影响瓦斯爆炸以及爆炸后部分致灾性气体生成的关键反应步.结果表明:瓦斯爆炸后温度、压力将分别达到2800K,0.24MPa左右;促进瓦斯爆炸的关键反应步为CH3+O2=CH3O+O,CH4+HO2=CH3+H2O2;促进CO与CO2生成的关键反应步为CH3+O2=CH3O+O,CH4+O2=CH3+HO2,CH4+HO2=CH3+H2O2,CH3+HO2=CH3O+OH,H+O2=OH+O.  相似文献   

3.
用经验势与ab initio理论相结合的方法寻找了团簇NH3(H2O)3的稳定结构。对由经验势计算所得的100个初始结构,进一步用HF和MP2的理论方法,在6-31 G(d,p)和6-311 G(d,p)基组水平上对其进行几何优化、能量计算和频率计算。分析了氢键的特征以及团簇的结合能,并得到团簇的5种能量较低的稳定结构。计算结果表明:不同情况的氢键分布能够产生多个能量相近、空间结构不同的异构体;团簇中最稳定的异构体呈平面环状结构,分子间氢键键长在1.772~2.030之间。  相似文献   

4.
为了探明四氮唑体系质子传导速率与分子间氢键强度的关系,采用密度泛函理论,在B3LYP/6-311++G(2d,2p)水平下对四氮唑二聚体N_4CH_2-N_4CH_3进行了几何结构优化和频率分析,重点分析了能量相对较低的8种二聚体的结构、能量、自然键轨道(NBO)和电荷转移量,并采用QST_2方法在B3LYP/6-31+G(d)水平下研究了8种二聚体间质子传递的动态过程,发现了6种过滤态,计算了其传递能垒.结果表明,四氮唑与质子化的四氮唑阳离子通过N…H—N氢键形成分子间相互作用较强的二聚体N_4CH_2-N_4CH_3,N…H—N氢键表现出明显的红移特征;N…H—N氢键相互作用稳定化能主要是N原子孤对电子轨道与N—H键反键轨道之间的相互作用;N…H—N氢键强度是影响质子传递能垒大小的主要因素,即直接影响着四氮唑体系中质子的传导速率.  相似文献   

5.
本文利用HO_3基态分析势能函数,计算了反应(1)H+O_3→HO+O_2和(2)H+O_3→O+HO_2经典轨迹。求得298K下的反应截面。得出反应(1)和(2)的近似速度常数分别为3.14×10~(-11)cm~3·molecule~(-1)·S~(-1)和0.23×10~(-11)cm~3.molecule~(-1)·S~(-1)。并讨论了反应产物的能量分配。理论计算结果与实验测定值符合很好。  相似文献   

6.
采用TiO2/H2O2催化体系对亚甲基蓝的光催化降解性能进行了动力学研究,结果表明:TiO2和H2O2的光催化反应符合动力学一级反应规律TiO2的多相催化反应有诱导期,反应速度较慢,H2O2的均相催化没有诱导期,反应速度较快,TiO2和H2O2的复合催化可同时利用不同波段的光,能提高光的利用率,加快HO自由基的生成及其在水中的传递,加快了有机物的降解过程,提高降解速度.  相似文献   

7.
本文用CNDO量子化学方法研究了配合物(Cp_2TiAlH_3Y)_2[Y=—H(Ⅰ)、—NH_2(Ⅱ)、—OH(Ⅲ))的电子结构和化学键。研究表明:氢键结构Ti(u—H)_2AlH(u—Y)_2AlH(u—H)_2Ti是配合物中最活泼的部分。这些分子的HOMO特征主要是TiH_2;Ti—H键是带有离子成份的共价键;分子从Ⅰ、Ⅱ到Ⅲ,HOMO能量下降,Ti—H键级增加,LUMO中Ti轨道成份下降。根据文中所提出的催化机理,上述性质的变化和它们在烯烃加氢和异构化中呈现的催化活性是一致的。此外,本文还解释了分子Ⅰ双聚的原因。  相似文献   

8.
通过KAuCl4与tpptpy(tpptpy=4-′p-三苯基膦甲基苯基-2,2′:6,2″-三联吡啶)反应得到一种加合物[H2(tpptpy)(AuCl2)Cl2]2.H2O,该加合物经过单晶X-射线衍射进行结构表征。结果显示,该加合物由[H2(tpptpy)]^3+,[AuCl2]^-和两个氯离子构成,并通过分子间(内)的C—H…Cl,O—H…Cl,N—H…Cl和C—H…O氢键形成了三维疏水孔洞结构。AuCl4^-使水分子氧化产生H+从而使三联吡啶配体质子化,进而抑制了Au(Ⅲ)与tpptpy的配位反应,同时质子化的配体可以与AuCl2^-形成难溶加合物,促进了Au(Ⅲ)向Au(Ⅰ)还原反应的进行。  相似文献   

9.
检测了鲱精DNA水溶液及其经过1%、2%和3%H2O2处理48h的拉曼光谱图.实验结果表明DNA在水溶液中同时具有A、B两种构象,但以B型构象为主.经H2O2处理后,DNA水溶液的A型构象有所增强,碱基堆积程度下降.H2O2对碱基和脱氧核糖几乎没有损伤,对DNA的主链结构也只造成很轻微的损伤.由此可见H2O2本身对DNA的损伤是很小的,只有在外界因素诱发下H2O2经反应生成HO.才会给DNA造成严重损伤.  相似文献   

10.
炼油工业作为一个能量密集型工业,对炼厂干气中轻烃组分气体进行有效回收且利用,将同时解决其一直面临的节能及环保两大难题.采用吸附法以及吸附-水合法分离含有C2(即C2H6+C2H4)的模拟炼厂干气M1:C2H6(11.55%)+C2H4(12.46%)+CH4(29.15%)+N2(27.02%)+H2(19.82%),...  相似文献   

11.
本文计算了基态自由基N_2H(~2A′)的平衡几何、离解能、偶极矩、力常数和振动频率。由此导出N_2H的分析势能函数,它正确地描述了反应N_2H→N_2 H和N_2H→NH N的动力学特征,其活化能分别为14.07和150.12Kcal/mole,逆反应的活化能分别为17.53和9.685Kcal/mole。N_2H中氢内迁移活化能为64.6Kcal/mole。发现了亚稳的氢键构型N—H…N。  相似文献   

12.
为探究Fe2+掺杂对十二胺分子(DDA)及其阳离子(DDA+)在高岭石层面吸附的微观影响机制,对DDA和DDA+在Fe2+掺杂高岭石(001)及(■)面的吸附进行了密度泛函理论(DFT)计算.结果表明:DDA和DDA+在Fe2+掺杂高岭石层面的吸附机理为氢键和范德华静电引力共同作用.DDA在Fe2+掺杂高岭石层面吸附以氢键作用为主,范德华静电引力作用为辅;DDA+在Fe2+掺杂高岭石层面吸附以范德华静电引力作用为主,氢键作用为辅.Fe2+的杂质缺陷增强了高岭石(001)面的表面活性,对(■)面的表面活性影响较小.研究结果可为进一步研究煤泥水中黏土颗粒表面的真实吸附状态及煤泥水高效处理药剂的设计提供理论依据.  相似文献   

13.
合成了一种钴(Ⅲ)配合物[Co(L) (AcOH) (H2O)]2·(ClO4)2·H2O[H2L=乙二胺缩-3-乙氧基水杨醛双席夫碱](1).利用元素分析仪、红外光谱仪和X射线衍射仪表征了合成产物的组成和结构.结构分析表明,合成的配合物1为三斜晶系,空间群P1,晶胞参数为a=1.123 5(2)nm,b=1.309 1(3)nm,c =2.197 2(4)nm,α =98.37(3)°,β=96.25(3)°,γ=112.05(3)°,V=2.9157(10) nm3,Z=2,Dc=1.366 g/cm3,GOOF=0.994,R1=0.071 0,wR2=0.2042.标题化合物分子1是由金属钴(Ⅲ)离子与AcOH配体中1个O原子,水分子中的1个O原子以及配体L2-中的2个O原子和2个N原子配位而成.化合物1通过O-H…O氢键作用形成二聚体,通过C-H…O弱氢键作用形成3-D网状结构.  相似文献   

14.
以6-甲基-吡嗪-2-羧酸为配体,在水热条件下,设计合成具有二维超分子结构的配合物[Co(C6H5N2O2)2(H2O)2].通过X射线单晶衍射仪对配合物的晶体结构进行测定.配合物属于单斜晶系,P21/c空间群.Co(Ⅱ)与2个N原子和4个O原子形成一个六配位的轻微扭曲的八面体构型.Co2+与来自两个配体上的2个N原子和2个O原子螯合配位,形成赤道平面,Co2+的轴向位置被2个水分子占据.配合物分子之间通过分子间氢键作用形成二维超分子网状结构.  相似文献   

15.
为考察紫外催化过氧化氢工艺降解三氯生的降解效能,利用动力学模型对三氯生的表观降解速率进行模拟.考察氧化剂投加量、三氯生浓度、NOM质量浓度和p H对三氯生降解速率的影响.结果表明,H_2O_2的投加量小于1 mmol/L时,三氯生的降解速率随H_2O_2浓度的增加而增加,而当H_2O_2的投加量大于1 mmol/L时,由于H_2O_2对HO·的捕获作用增强,三氯生的降解速率随H_2O_2投加量的增加而降低.当三氯生的初始浓度增加时,体系中HO·的稳态浓度随之降低,导致三氯生降解的表观速率降低.体系中存在NOM时,三氯生的降解速率显著降低,主要是由于NOM能够与三氯生竞争光子和HO·.三氯生去质子化后更快地被UV/H_2O_2降解,其去质子化形态的摩尔吸光系数变大,而且其与HO·的二级反应速率更快.通过LC/MS-MS检测UV/H_2O_2氧化TCS得到6种产物,推测TCS的降解途径主要是通过脱氯反应和羟基化反应.  相似文献   

16.
在水热条件下,合成配合物[Ho2(bpdc)3·(H2O)4].5H2O单晶(bpdc为2,2'-联吡啶-6,6'二羧酸).配合物晶体属于三斜晶系,P-1空间群.在晶体结构中含有2种独立配位模式Ho3+,其配位构型都是八配位的扭曲四方反棱柱体.一种为一个配体H2bipy上的2个氮原子和2个羧基氧原子采用螯合配位占据四方反棱柱体的4个顶点位置,同时余下4个顶点位置被4个配位水分子占据;另一种是2个配体H2bpdc上的4个氮原子与4个羧基上的氧原子配位形成八配位的扭曲四方反棱柱体构型.配合物分子之间通过分子内和分子间的氢键作用与π-π堆积作用进一步形成三维框架结构.  相似文献   

17.
采用溶液浸渍法制备TiO2并将其担载到瓷砖上,通过添加过渡金属离子和H2O2,来考察对TiO2光催化降解苯胺的影响,其动力学过程利用模型进行模拟.结果表明,添加Cu2+、Mn2+和Co2+均能提高TiO2催化活性,且提高程度为Cu2+>Mn2+>Co2+;掺杂Ni2+反而降低其活性.H2O2能提高瓷砖固载TiO2的催化...  相似文献   

18.
采用密度泛函理论计算获得了5-甲基-2-硫代尿嘧啶(5M2TU)在气相和导体极化连续介质模型(CPCM)中的光谱,通过与FT-Raman实验光谱进行比较,发现加上溶剂模型的计算的拉曼光谱与实验比较吻合.获得了5M2TU在水、甲醇和乙腈中的紫外吸收光谱,发现在不同溶剂中吸收带会发生不同程度的位移.开展了5M2TU的紫外光谱指认,指认了在乙腈溶剂中200~330nm范围内的三个吸收带分别为πH→π*L,πH→π*L+1和πH-2→π* L+1的跃迁.在B3LYP/6-311++G(d,p)水平上,采用CPCM溶剂模型(水溶剂中)优化了5M2TU-nH2O(n=1,2)可能的稳定结构,并获得了它们的计算振动频率.研究结果表明偶极耦合和氢键作用是导致C=O伸缩振动频率向低波数位移的主要原因.  相似文献   

19.
利用GC-FPD和TPD-MS考察了浸渍Fe3+和Cr3+对灵石煤热解过程中气体产物逸出的影响.结果表明:Fe3+和Cr3+破坏了煤中的氢键并与煤表面官能团形成活性络合物,使煤样的挥发分增加、固定碳等减少;由于Fe3+的氧化作用,载铁煤中的黄铁矿硫明显减少.低于300℃时,Fe3+和Cr3+促进煤中有机硫分解,增加了H2S和SO2的生成量;300~700℃时,由于Fe3+和Cr3+的固硫反应,转移到气相中的硫急剧减少;700℃时置换为氮气和氢气混合气后,在高温还原性气氛下,Fe和Cr的固硫产物和稳定的有机硫加氢脱硫产生大量的H2S.由于Fe3+和Cr3+促进了煤的热解和初级焦油裂解,CO2,CO,H2O,CH4的生成量增加;金属离子对芳香结构缩聚反应的促进作用增加了H2的生成量,Cr3+对灵石焦煤热解过程中逸出气体的影响强于Fe3+.  相似文献   

20.
[Cu(C12H8N2)(H2O)2]SO4水热合成及晶体结构表征   总被引:3,自引:0,他引:3  
以CuSO4·5H2 O ,Na2 MoO4·2H2 O ,phen ,H3 PO4为原料,用中温水热合成技术制得了一种新型一维链状配合物[Cu(phen) (H2 O) 2 ]SO4,并通过元素分析,红外线和X射线单晶衍射法进行了结构表征。晶体属于单斜晶系,空间群为C2 /c ,a =1.4 85 3(3)nm ,b =1.3811(3)nm ,c =0 .70 10 (14 )nm ,β=10 8.6 5 0°,V =1.36 2 5 (15 )nm3 ,Dc =1.832g/cm3 ,R1=0 .0 2 90 ,wR2 =0 .0 86 2 ,F(0 0 0 ) =76 4 ,Z =4。X射线单晶衍射和IR光谱结果表明,在固态条件下配阳离子与SO42 -之间存在氢键作用,Cu2 与2个氮原子和2个氧原子配位。另外还进行了热性质研究,并对配合物的热分解进行了讨论  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号