首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
2.
Interpretation of secondary electron images obtained using a low vacuum SEM   总被引:2,自引:0,他引:2  
Charging of insulators in a variable pressure environment was investigated in the context of secondary electron (SE) image formation. Sample charging and ionized gas molecules present in a low vacuum specimen chamber can give rise to SE image contrast. "Charge-induced" SE contrast reflects lateral variations in the charge state of a sample caused by electron irradiation during and prior to image acquisition. This contrast corresponds to SE emission current alterations produced by sub-surface charge deposited by the electron beam. "Ion-induced" contrast results from spatial inhomogeneities in the extent of SE signal inhibition caused by ions in the gaseous environment of a low vacuum scanning electron microscope (SEM). The inhomogeneities are caused by ion focusing onto regions of a sample that correspond to local minima in the magnitude of the surface potential (generated by sub-surface trapped charge), or topographic asperities. The two types of contrast exhibit characteristic dependencies on microscope operating parameters such as scan speed, beam current, gas pressure, detector bias and working distance. These dependencies, explained in terms of the behavior of the gaseous environment and sample charging, can serve as a basis for a correct interpretation of SE images obtained using a low vacuum SEM.  相似文献   

3.
Most of the work carried out in relation to contrast mechanisms and signal formation in an environmental scanning electron microscope has yet to consider the time dependent aspects of image generation at a quantitative level. This paper quantitatively describes gaseous electron‐ion recombination (also known as ‘signal scavenging’) in an environmental scanning electron microscope at a transient level by utilizing the dark shadows/streaks seen in gaseous secondary electron detector images of alumina (Al2O3) immediately after a region of enhanced secondary electron emission is encountered by a scanning electron beam. The investigation firstly derives a theoretical model of gaseous electron‐ion recombination that takes into consideration transients caused by the time constant of the gaseous secondary electron detector electronics and external circuitry used to generate images. Experimental data of pixel intensity versus time of the streaks are then simulated using the model enabling the relative magnitudes of (i) ionization and recombination rates, (ii) recombination coefficients and (iii) electron drift velocities, as well as absolute values of the total time constant of the gaseous secondary electron detection system and external circuitry, to be determined as a function of microscope operating parameters such as gaseous secondary electron detector bias, sample‐electrode separation, imaging gas pressure, and scan speed. The results revealed, for the first time, the exact dependence that the effects of secondary electron‐ion recombination on signal formation has on reduced electric field and time in an environmental scanning electron microscope. Furthermore, the model implicitly demonstrated that signal loss as a consequence of field retardation due to ion space charges, although obviously present, is not the foremost phenomenon causing streaking in images, as previously thought.  相似文献   

4.
Using recent papers on scanning electron microscopy (SEM) of chemical vapor deposition (CVD) diamond films, two analytical applications of the SEM are discussed: the morphologic investigations (secondary electron emission mode) and the recognition of impurities and defects [cathodoluminescence (CL) mode]. Studies of CVD diamond films by SEM demonstrate that the morphologies of these films are affected by synthesis conditions, especially by substrate temperature, methane concentration, and total pressure in the reactor. CL spectra and images are useful tools for clarifying the relationship between emission centers and different types of defects generated during the process of diamond crystal growth. The paper shows that the investigations of the morphology, crystallinity, local CL emission, as well as the surface distribution of CL spectra on CVD diamond films by SEM led to the correlative information for quality estimation of films in comparison with natural diamond.  相似文献   

5.
The secondary electron emission induced by electrons in the energy range 2.5–25 keV was measured in a SEM. Values of the emission coefficient for C, Al, Cu, Mo, Ag and Au are presented showing that it varies systematically with atomic number. The coefficient is still appreciable at 25 keV beam energy. The signal from the secondary electron collector in the SEM includes large contributions from sources other than secondary electron emission from the specimen. These contributions are discussed and their relative importance measured. Physics Abstracts classification numbers: 0.690, 8.900  相似文献   

6.
Three‐dimensional electron backscatter diffraction allows obtaining the 3D image of a material from the stack of 2D sections. This is achieved by repeated application of two different beams; electron beam for electron backscatter diffraction mapping of the surface and focused ion beam for removing a thin layer of material from the surface. In most of these systems with two beams, the experiment requires stage movements for correct positioning of the sample to the respective beams. However, imperfections in this positioning are difficult to avoid, which yield small translational misalignments between the sections in the output data. In this work, we deal with an important task of correcting these misalignments between the sections such that the 3D image is recovered properly. On a simple example, we demonstrate that commonly used methods fail in case there is a structural anisotropy in the material under consideration. We propose an improved alignment algorithm which can neglect this behaviour with the use of external support information on a systematic trend in the translational misalignments. Efficiency of the algorithm is proven on a number of simulated data with different kinds of anisotropy. Application to a real data sample of a fine grained aluminium alloy is also given. The algorithm is available in an open‐source library.  相似文献   

7.
Eric Doehne 《Scanning》1997,19(2):75-78
Spurious x-ray signals, which previously prevented high-resolution energy-dispersive x-ray analysis (EDS) in the environmental scanning electron microscope (ESEM), can be corrected using a simple method presented here. As the primary electron beam travels through the gas in the ESEM chamber, a significant fraction of the primary electrons is scattered during collisions with gas molecules. These scattered electrons form a broad skirt that surrounds the primary electron beam as it impacts the sample. The correction method assumes that changes in the width of the electron skirt with pressure are less important than changes in the skirt intensity; this method works as follows: The influence of the gas on the overall x-ray data is determined by acquiring EDS spectra at two pressures. Subtracting the two spectra provides us with a difference spectrum which is then used to correct the original data, using extrapolation, back to the x-ray spectrum expected under high-vacuum conditions. Low-noise data are required to resolve small spectral peaks; however, the principle should apply equally to x-ray maps and even to low-magnification images.  相似文献   

8.
Focused ion beam-scanning electron microscope (FIB-SEM) tomography is a powerful application in obtaining three-dimensional (3D) information. The FIB creates a cross section and subsequently removes thin slices. The SEM takes images using secondary or backscattered electrons, or maps every slice using X-rays and/or electron backscatter diffraction patterns. The objective of this study is to assess the possibilities of combining FIB-SEM tomography with cathodoluminescence (CL) imaging. The intensity of CL emission is related to variations in defect or impurity concentrations. A potential problem with FIB-SEM CL tomography is that ion milling may change the defect state of the material and the CL emission. In addition the conventional tilted sample geometry used in FIB-SEM tomography is not compatible with conventional CL detectors. Here we examine the influence of the FIB on CL emission in natural diamond and the feasibility of FIB-SEM CL tomography. A systematic investigation establishes that the ion beam influences CL emission of diamond, with a dependency on both the ion beam and electron beam acceleration voltage. CL emission in natural diamond is enhanced particularly at low ion beam and electron beam voltages. This enhancement of the CL emission can be partly explained by an increase in surface defects induced by ion milling. CL emission enhancement could be used to improve the CL image quality. To conduct FIB-SEM CL tomography, a recently developed novel specimen geometry is adopted to enable sequential ion milling and CL imaging on an untilted sample. We show that CL imaging can be manually combined with FIB-SEM tomography with a modified protocol for 3D microstructure reconstruction. In principle, automated FIB-SEM CL tomography should be feasible, provided that dedicated CL detectors are developed that allow subsequent milling and CL imaging without manual intervention, as the current CL detector needs to be manually retracted before a slice can be milled. Due to the required high electron beam acceleration voltage for CL emission, the resolution for FIB-SEM CL tomography is currently limited to several hundreds of nm in XY and up to 650 nm in Z for diamonds. Opaque materials are likely to have an improved Z resolution, as CL emission generated deeper in the material is not able to escape from it.  相似文献   

9.
For studying the electrical properties (charge trapping, transport and secondary electron emission) of the polypropylene‐based nanocomposites with different contents of natural clay, the specimens were submitted to electron irradiation of a scanning electron microscope. A device, suitably mounted on the sample holder of the scanning electron microscope, was used to measure two currents (i.e. leakage and displacement currents) induced in the polypropylene‐based nanocomposites (polymer nanocomposites) under electron irradiation. The evolution of trapped charge during irradiation for each type of studied polymer nanocomposites is deduced. The amount of trapped charge at the steady state is also determined by measuring the change of secondary electron image size associated to the electron trajectory simulation. It is found, surprisingly, that not only the leakage current increases as a function of clay loading level but also trapped charge. However, this could be related to the increase of conductivity in one hand and to proliferation of interfaces between nanoparticles and neighbouring materials on the other hand. These two processes play crucial role in controlling the carrier transport (through polymer nanocomposites or/and along its surface) closely related to the charge storage and leakage current. Additional experiment using dielectric spectroscopy were performed to show the effect of clay concentration in changing the dielectric relaxation behaviour and to evidence the existence of interfaces between nanoparticles and polymer. The secondary electron emission during electron irradiation is also studied through the total electron yield that is deduced by correlating the measured leakage and displacement currents.  相似文献   

10.
李伟  郭福平 《压力容器》2008,25(6):9-12
对气体管道泄漏孔处声源进行了声发射检测试验,分析了气体泄漏产生声发射的原因,通过对不同泄漏孔直径、不同泄漏内压情况下的声发射信号处理与分析,得出气体管道泄漏声源的频率范围及幅度随管道内部压力、泄漏孔径的变化影响规律,并与管道气体泄漏的数值模拟结果进行了对比分析,试验研究结果为气体管道泄漏声发射检测提供依据。  相似文献   

11.
Here we demonstrate the effects of electron–ion recombination on imaging signals utilized in low vacuum scanning electron microscopes (SEMs). The presented results show that, under normal operating conditions, recombination of ionized gas molecules with secondary electrons (SEs) suppresses a significant fraction of emitted electrons. If the ion flux (and hence the spatial dependence of the SE–ion recombination rate) is laterally inhomogeneous across the imaged region of a specimen, contrast in SE images can be influenced and in some cases (under conditions of high detector field strength and long ionic mean free path) dominated by variations in the recombination rate. Consequently, SE images of features such as topographic asperities can exhibit edge‐darkening, leading to inversion of some topographic contrast. Recognition of the extent and nature of electron–ion recombination is required for a correct understanding of processes occurring in variable pressure SEMs and, subsequently, for models of image formation.  相似文献   

12.
Toth M  Phillips MR 《Scanning》2000,22(6):370-379
Generation of contrast in images obtained using the environmental scanning electron microscope (ESEM) is explained by interpretation of images acquired using the gaseous secondary electron detector (GSED), ion current, and the Everhart-Thornley detector. We present a previously unreported contrast component in GSED and ion current images attributed to signal induction by changes in the concentration of positive ions in the ESEM chamber during image acquisition. Changes in positive ion concentration are caused by changes in electron emission from the sample during image acquisition and by a discrepancy between the drift velocities of negative and positive charge carriers in the imaging gas. The proposed signal generation mechanism is used to explain contrast reversal in images produced using the GSED and ion current signals and accounts for discrepancies in contrast observed, under some conditions, in these types of images. Combined with existing models of signal generation in the ESEM, the proposed model provides a basis for correct interpretation of ESEM images.  相似文献   

13.
We analyze the contrast reversal of Kikuchi bands that can be seen in electron backscatter diffraction (EBSD) patterns under specific experimental conditions. The observed effect can be reproduced using dynamical electron diffraction calculations. Two crucial contributions are identified to be at work: First, the incident beam creates a depth distribution of incoherently backscattered electrons which depends on the incidence angle of the beam. Second, the localized inelastic scattering in the outgoing path leads to pronounced anomalous absorption effects for electrons at grazing emission angles, as these electrons have to go through the largest amount of material. We use simple model depth distributions to account for the incident beam effect, and we assume an exit angle dependent effective crystal thickness in the dynamical electron diffraction calculations. Very good agreement is obtained with experimental observations for silicon at 20 keV primary beam energy.  相似文献   

14.
Jacka M  Zadrazil M  Lopour F 《Scanning》2003,25(5):243-246
A new design of secondary electron (SE) detector is described for use in low-vacuum scanning electron microscopes. Its distinguishing feature is a separate detector chamber, which can be maintained at a pressure independent of the pressure in the specimen chamber. The two chambers are separated by a perforated membrane or mesh across which an electric field is applied, making it relatively transparent to low-energy electrons but considerably less so to the gas molecules. The benefits of this arrangement are discussed. The final means of detecting the electrons can be a conventional scintillator and photomultiplier arrangement or any of the methods using the ambient gas as an amplifying medium. Images obtained with the detector show good SE contrast and low backscattered electron contribution.  相似文献   

15.
The starting process and the stopping process of a double dry gas seal for pumps were investigated by acoustic emission (AE) testing. The characteristic frequency band of contact of the seal faces was distinguished from noises in three different comparative experiments. The root mean square (RMS) of the AE signals after band-pass filtering was determined to effectively reflect the contact condition of the seal faces. Based on the characteristics of the AE RMS, both the starting process and the stopping process could be divided into three periods, and a lift-off rotational speed and a touch-down rotational speed were defined. The lift-off speed varied non-monotonically with the inlet pressure. The lift-off speed was smallest at a certain pressure, which meant that at that speed the seal faces lift-off most easily. The behavior of the touch-down speed was similar to that of the lift-off speed, but was a little smaller than the latter. These results reveal the potential of AE technology for monitoring the contact condition of dry gas seals during the starting and stopping processes and may help in the design and operation of the dry gas seals.  相似文献   

16.
An investigation by electron backscatter diffraction on gypsum shows that this technique can be used to study the microstructures and crystallographic preferred orientation of gypsum. Presented here are the methods, verification tests and data obtained from a naturally deformed sample of gypsum‐rich rock. The electron backscatter diffraction data show the sample has a strong crystallographic preferred orientation.  相似文献   

17.
In environmental scanning electron microscopy applications in the kPa regime are of increasing interest for the investigation of wet and biological samples, because neither sample preparation nor extensive cooling are necessary. Unfortunately, the applications are limited by poor image quality. In this work the image quality at high pressures of a FEI Quanta 600 (field emission gun) and a FEI Quanta 200 (thermionic gun) is greatly improved by optimizing the pressure limiting system and the secondary electron (SE) detection system. The scattering of the primary electron beam strongly increases with pressure and thus the image quality vanishes. The key to high‐image quality at high pressures is to reduce scattering as far as possible while maintaining ideal operation conditions for the SE‐detector. The amount of scattering is reduced by reducing both the additional stagnation gas thickness (aSGT) and the environmental distance (ED). A new aperture holder is presented that significantly reduces the aSGT while maintaining the same field‐of‐view (FOV) as the original design. With this aperture holder it is also possible to make the aSGT even smaller at the expense of a smaller FOV. A new blade‐shaped SE‐detector is presented yielding better image quality than usual flat SE‐detectors. The electrode of the new SE detector is positioned on the sample table, which allows the SE‐detector to operate at ideal conditions regardless of pressure and ED.  相似文献   

18.
A. Mohan  N. Khanna  J. Hwu  D. C. Joy 《Scanning》1998,20(6):436-441
Secondary electron imaging is not possible in the variable pressure scanning electron microscope because the mean free path of the secondaries in the gas is too short to permit them to reach the detector. This paper therefore investigates an alternative strategy for producing an image containing significant amounts of secondary electron contrast. This involves modifying the microscope by the addition of a biased electrode above the sample and then collecting a specimen current signal. This system, originally described by Farley and Shah (1988), is found to produce true secondary electron detail over a wide range of conditions.  相似文献   

19.
Guo N  Liu Q 《Journal of microscopy》2012,246(3):221-228
Microstructure of pearlitic steels subjected different heat treatments were characterized combining the usage of back-scattered electron imaging and electron backscatter diffraction in a scanning electron microscope. The results indicated that the method used in current study enabled the acquisition of pearlite nodule, colony and interlamellar spacing of pearlite structure only through sample preparation of one time. Both the morphology of pearlite lamellae and the crystallographic orientation of ferrite matrix can be released in back-scattered electron imaging image and electron backscatter diffraction micrograph acquired at the same region. The definitions of pearlite colony and the low-angle boundaries existed in ferrite matrix were also discussed based on this method.  相似文献   

20.
The effect of shot noise and emission noise due to materials that have different emission properties was simulated. Local variations in emission properties affect the overall signal‐to‐noise ratio (SNR) value of the scanning electron microscope image. In the case in which emission noise is assumed to be absent, the image SNRs for silicon and gold on a black background are identical. This is because only shot noise in the primary beam affects the SNRs, irrespective of the assumed noiseless secondary electron emission or backscattered electron emission processes. The addition of secondary emission noise degrades the SNR. Materials with higher secondary electron yield and backscattering electron yield give rise to higher SNR. For images formed from two types of material, the contrast of the image is lower. The reduction in image signal reduces the overall image SNR. As expected, large differences in δ or η give rise to higher SNR images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号