首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold loaded on TiO2 (Au/TiO2) catalysts were prepared using Au(I)–thiosulfate complex (Au(S2O3)23−) as the gold precursor for the first time. The samples were characterized by UV–vis diffuse reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption flame emission spectroscopy (AAS), and X-ray photoelectron spectroscopy (XPS) methods. Using Au(S2O3)23− as gold precursor, ultra-fine gold nanoparticles with a highly disperse state can be successfully formed on the surface of TiO2. The diameter of Au nanoparticles increases from 1.8 to 3.0 nm with increasing the nominal Au loading from 1% to 8%. The photocatalytic activity of Au/TiO2 catalysts was evaluated from the analysis of the photodegradation of methyl orange (MO). With the similar Au loading, the catalysts prepared with Au(S2O3)23− precursor exhibit higher photocatalytic activity for methyl orange degradation when compared with the Au/TiO2 catalysts prepared with the methods of deposition–precipitation (DP) and impregnation (IMP). The preparation method has decisive influences on the morphology, size and number of Au nanoparticles loaded on the surface of TiO2 and further affects the photocatalytic activity of the obtained catalysts.  相似文献   

2.
Plasma/catalyst combination is an active solution to reach high conversion rates at low energetic cost. TiO2 is one of the catalysts frequently used in dielectric barrier discharges. Plasma/TiO2 synergy was already exhibited but the mechanisms still have to be understood. This work distinguishes three main effects involved in the synergy: (a) effect of catalyst on the injected power, (b) the effect of porosity on C2H2 oxidation, and (c) the photocatalytic degradation of C2H2 on TiO2 under plasma exposure. Different glass fibres-based catalytic materials coated with SiO2 and/or TiO2 nano-particles are used to separate these three contributions regarding to C2H2 conversion. It is reported that at constant voltage the injected power is mainly increased by the presence of glass fibres. C2H2 oxidation is mainly enhanced by the macroporosity of glass fibres and in a minor way by the nano-particles. The production of O atoms close to the surface is probably responsible for the higher C2H2 removal efficiency with porous material. The photocatalytic activity of TiO2 is negligible in the plasma except if additional UV lamps are used to activate TiO2. With external UV, photocatalytic activity is more efficient in the plasma phase than in a neutral gas phase. This plasma/photocatalysis synergy is due to the use of O atoms in photocatalytic mechanisms.  相似文献   

3.
Bimodal nanocrystalline mesoporous TiO2 powders with high photocatalytic activity were prepared by a hydrothermal method using tetrabutylorthotitanate (TiO(C4H9)4, TBOT) as precursor. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption measurements. The photocatalytic activity of the as-prepared TiO2 powders was evaluated by the photocatalytic degradation of acetone (CH3COCH3) under UV-light irradiation at room temperature in air. The effects of hydrothermal temperature and time on the microstructures and photocatalytic activity of the TiO2 powders were investigated and discussed. It was found that hydrothermal treatment enhanced the phase transformation of the TiO2 powders from amorphous to anatase and crystallization of anatase. All TiO2 powders after hydrothermal treatment showed bimodal pore-size distributions in the mesoporous region: one was intra-aggregated pores with maximum pore diameters of ca. 4–8 nm and the other with inter-aggregated pores with maximum pore diameters of ca. 45–50 nm. With increasing hydrothermal temperature and time, the average crystallite size and average pore size increased, in contrast, the Brunauer-Emmett-Teller (BET) specific surface areas, pore volumes and porosity steadily decreased. An optimal hydrothermal condition (180 °C for 10 h) was determined. The photocatalytic activity of the prepared TiO2 powders under optimal hydrothermal conditions was more than three times higher than that of Degussa P25.  相似文献   

4.
采用超声辅助溶胶-凝胶法制备活化半焦负载B掺杂TiO_2光催化剂,即B-TiO_2/ASC。在相同实验条件下,分别在紫外和可见光下研究其对模拟烟气的光催化氧化脱硝性能。结果表明,在紫外和可见光下,B掺杂光催化剂的活性得到提高,在可见光下的活性增加更加显著,反应180 min后仍可保持80%以上的脱硝率。结合XRD和FT-IR分析,可以看出B以取代掺杂的方式存在于TiO_2中并且导致TiO_2表面缺陷。表面缺陷有助于光生载流子的分离,从而延长光生电子的寿命并增加参与光催化反应的光生电子数量,从而产生更多的羟基自由基氧化NO,最终提高光催化脱硝率。  相似文献   

5.
Functionalized mesoporous TiO2 molecular sieves were prepared by treating ordered mesoporous TiO2 with phosphoric acid or ammonium sulfate at high temperature. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption–desorption measurement, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FT-IR). The photocatalytic activity of the samples was evaluated by photocatalytic decomposition of bromomethane (CH3Br) in air. Results revealed that the functionalized TiO2 samples preserved ordered mesostructure and exhibited enhanced physicochemical properties. The photocatalytic activity of the functionalized mesoporous TiO2 sample was about three times higher than that of the pure mesoporous TiO2. The concentrations of phosphoric acid and ammonium sulfate solutions used for the functionalization of TiO2 greatly influenced the photocatalytic activity of the resultants materials. The optimal concentrations of phosphoric acid and ammonium sulfate solutions were 0.05 and 0.10 M, respectively. The enhanced photocatalytic performance of the functionalized mesoporous TiO2 could be attributed to large specific surface area, high hydroxyl density, and enhanced surface chemical state.  相似文献   

6.
Hydrotreating of Maya heavy crude oil over high specific surface area CoMo/TiO2–Al2O3 oxide supported catalysts was studied in an integral reactor close to industrial practice. Activity studies were carried out with Maya crude hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodenitrogenation (HDN), and hydrodeasphaltenization (HDAs) reactions. The effect of support composition, the method of TiO2 incorporation, and the catalyst deactivation are examined. Supported catalysts are characterized by BET specific surface area (SSA), pore volume (PV), pore size distribution (PSD), and atomic absorption. It has been found that sulfided catalysts showed a wide range of activity variation with TiO2 incorporation into the alumina, which confirmed that molybdenum sulfided active phases strongly depend on the nature of support. The pore diameter and nature of the active site for HDS, HDM, HDN, and HDAs account for the influence of the large reactant molecules restricted diffusion into the pore, and/or the decrease in the number of active sites due to the MoS2 phases buried with time-on-stream. The textural properties and hysteresis loop area of supported and spent catalysts indicated that catalysts were deactivated at the pore mouth due to the metal and carbon depositions. The atomic absorption results agreed well regarding the textural properties of spent catalysts. Thus, incorporation of TiO2 with γ-Al2O3 alters the nature of active metal interaction with support, which may facilitate the dispersion of active phases on the support surface. Therefore, the TiO2 counterpart plays a promoting role to HDS activity due to the favorable morphology of MoS2 phases and metal support interaction.  相似文献   

7.
TiO2 (anatase) with different microstructure was synthesized by thermal hydrolysis of the titanyl sulfate and studied by X-ray powder diffraction, high resolution transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The effect of titanium dioxide structure, regular or distorted, on the photocatalytic degradation of Acid Orange 7 Dye (AO7) in water upon ultraviolet light was studied. It was found that synthesized TiO2 possesses a relatively high reactivity when illuminated but also show different adsorption in the dark. The relationship between these behaviors depends on the real structure of the catalysts. Catalysts with a perfect structural ordering formed after heating at temperature higher than 500 °C show better photocatalytic performance. Small amount of Pt added into the TiO2 structure was found to improve further the catalyst reactivity. Pt-modified titania catalysts oxidize AO7 more efficiently than P-25 Degussa TiO2. Doping effect of Pt on the structural and photocatalytic properties of the samples is discussed.  相似文献   

8.
Titanium substituted SBA-15 mesoporous materials have been successfully prepared by conventional hydrothermal method and they were also used as support on TiO2 loaded SBA-15 photocatalysts. The synthesized materials were characterized by XRD, UV–vis DRS, FT-IR, BET and TEM. We also examined the activity of these materials as photocatalysts for the decomposition of orange II. The incorporation of titanium into framework of SBA-15 makes the pore diameter and pore volume to decrease and slightly decreases the surface area compared to SBA-15. In addition, the pore size distribution becomes broaden with an increase of titanium amount in the SBA-15 framework. For Ti-SBA-15 and TiO2 loaded Ti-SBA-15 photocatalysts, the IR absorption at 960 cm−1 commonly accepted the characteristic vibration of Ti–O–Si bond. From the TEM images, the regular silica morphology is maintained in the case of Ti-SBA-15(Si/Ti = 50) but the Ti-SBA-15 sample having Si/Ti ratio = 10 partially destroys the hexagonal highly ordered structure and the mesopore structure is disappeared by the clogging of mesopore channels by the titanium dioxides particles for the 50 wt.% TiO2/Ti-SBA-15 samples. The photocatalytic activity increases with an increase of Ti content (decrease of Si/Ti ratio) and with an increase of TiO2 loading content.  相似文献   

9.
TiO2–SiO2 mixed oxides were prepared by sol–gel processes with one-stage (mix up fully hydrolyzed titania- and silica-sol), two-stage (with pre-hydrolysis) and modified two-stage synthesis routes. The photoresponse and AC impedance characterization of the derived catalysts are studied and correlated for the first time with the photocatalytic activities in water decomposition under UV illumination. Synergistic effects in terms of photocatalytic activity and electronic properties including band-gap energy, flat band potential and doping density were observed on atomically mixing TiO2 and SiO2 by the two-stage synthesis route. Meanwhile, the decline of photocurrent density were found on TiO2–SiO2 relative to bare TiO2, which could be attributed to low quality crystalline structure of the former compared to that of the latter. The superior photocatalytic performance of TiO2–SiO2 is ascribed to the higher flat band potential, band-gap energy, and doping density than those of bare TiO2.  相似文献   

10.
An important improvement of the photocatalytic activity of sol–gel prepared TiO2 has been achieved by sulphate pre-treatment, calcination at high temperature and further platinisation of the samples.

The presence of sulphuric acid clearly stabilised TiO2 surface area against sintering, maintaining at the same time anatase phase until higher calcination temperatures than in non-sulphated samples. Platinisation of the samples with different nominal amounts of platinum (from 0.5 to 2.5 wt%) was performed and the influence of sulphate treatment on the dispersion and deposit size of platinum on the TiO2 surface was studied.

Characterisation results and photocatalytic activity of these catalysts were compared with those of unmodified TiO2. Simultaneously sulphated and platinised TiO2 samples were highly active for phenol degradation, used as model reaction for the photocatalytic studies, having higher activities than only platinised or only sulphated samples. The activity of these samples were several orders of magnitude higher than that of the commercial TiO2 Degussa P25 (platinised or unmodified) as well, with independence of the nominal amount of platinum of the samples.

A wide characterisation of the samples was performed and correlations between characterisation results and activity properties are reported.  相似文献   


11.
Photocatalytic decomposition of 4-nitrophenol on Ti-containing MCM-41   总被引:1,自引:0,他引:1  
A series of Ti-containing MCM-41 samples, such as Ti-MCM-41 with variable Si/Ti ratios and Cr–Ti-substituted TiO2-loaded MCM-41 having different TiO2 loading, were prepared and studied for the photocatalytic decomposition of 4-nitrophenol in UV and visible light. The samples were characterized using surface area measurement, XRD, FT-IR, and UV–vis DRS techniques. In the case of the Ti-MCM-41 samples with Si/Ti ratios higher than 20 which were found to have typical mesoporous structure, the framework incorporation of Ti into MCM-41 increased with decreasing Si/Ti ratio. On the contrary, the Ti-MCM-41 with lower Si/Ti ratio (Si/Ti = 10) shows low structural integrity and the formation of Ti-oxide species, leading to a considerable decrease in surface area. In the case of Cr–Ti-substituted TiO2-loaded MCM-41 samples, significant absorption occurs in visible light and the absorption in both UV and visible region increases with increasing TiO2 loading. However, when the amount of TiO2 loaded on Cr–Ti-MCM-41 increased above 33 wt.%, the absorption in visible light increased slightly. Thus, it seems that, at higher TiO2 loading, some TiO2 particles are not closely bound to the wall of Cr–Ti-MCM-41. The photocatalytic activities of Ti-containing MCM-41 samples were strongly influenced by the amount of Ti. Under UV illumination, the highest photocatalytic activity for photocatalytic decomposition of 4-NP was observed for the Ti-MCM-41 having Si/Ti ratio of 20. Among various Ti-containing MCM-41 materials prepared in this work, only Cr–Ti-substituted TiO2-loaded MCM-41 catalysts exhibited discernable photocatalytic activities in visible light, and their photocatalytic activities increased considerably with increasing TiO2 loading up to 33 wt.%. Further increase in TiO2 loading enhanced photocatalytic activity slightly.  相似文献   

12.
A novel TiO2/Al2O3/cordierite honeycomb-supported V2O5–MoO3–WO3 monolithic catalyst was studied for the selective reduction of NO with NH3. The effects of reaction temperature, space velocity, NH3/NO ratio and oxygen content on SCR activity were evaluated. Two other V2O5–MoO3–WO3 monolithic catalysts supported on Al2O3/cordierite honeycomb or TiO2/cordierite honeycomb support, two types of pellet catalysts supported on TiO2/Al2O3 or Al2O3, as well as three types of pellet catalysts V2O5–MoO3–WO3–Al2O3 and V2O5–MoO3–WO3–TiO2 were tested for comparison. The experiment results show that this catalyst has a higher catalytic activity for SCR with comparison to others. The results of characterization show, the preparation method of this catalyst can give rise to a higher BET surface area and pore volume, which is strongly related with the highly active performance of this catalyst. At the same time, the function of the combined carrier of TiO2/Al2O3 cannot be excluded.  相似文献   

13.
The photocatalytic behavior of different TiO2-based photocatalysts was reported for gas-phase toluene removal under both UV and visible light illumination, and compared to that of commercial P25 (Degussa) TiO2. Promotion by sulfates and the use of nanosized anatase TiO2 were reported to strongly increase the toluene removal efficiency under UV illumination. Nanosized-anatase was prepared by a protecting group sol–gel synthesis using hexamethyldisilazane as crystallite growth inhibitor. Sulfates played a double positive role, with photogenerated electrons transfer effects limiting charge recombination and as repulsive species for strongly adsorbed aromatic intermediates that act as poisons. The decrease in particle size obtained on nanosized anatase TiO2 (5 nm) yielded a considerable enhancement in the toluene removal efficiency. Pure high surface area rutile has been synthesized at low temperature by a polyethylenglycol-containing sol–gel method for visible light activation purposes. A two-way semiconductor coupling phenomenon, consisting of a reciprocal electron/hole transfer between two visible light-activated oxides, rutile TiO2 and WO3, was proposed to explain the large gain in efficiency when adding low amounts of WO3 to rutile TiO2.  相似文献   

14.
刘芳  樊丰涛  吕玉翠  张双  赵朝成 《化工学报》2016,67(5):1635-1643
石墨烯是一种新型的碳纳米材料,具有超大的比表面积和优良的导电性能,将石墨烯与TiO2复合可显著提高复合材料的光催化性能,在光催化领域具有广泛的应用前景。主要介绍了石墨烯/TiO2复合纳米材料的制备方法以及在光催化降解有机污染物方面的应用,并分析了石墨烯/TiO2复合材料促进光催化机理,最后对石墨烯/TiO2复合光催化剂未来的发展趋势提出了展望。  相似文献   

15.
Si-doped and rare earth-doped TiO2 with large specific surface area were prepared by the hydrothermal method and sol–gel route, respectively, using C18H37NH2 as template. The samples were characterized by XRD, FT-IR, low-temperature N2 adsorption–desorption measurement, XPS and solid state UV–vis diffuse reflectance spectroscopy. The pore size for Si-doped TiO2 exhibits both mesoporous and microporous distribution, and that for rare earth-doped TiO2 exhibits a sharp and narrow distribution in microporous range. The photocatalytic activities were investigated with the degradation of phenol as probe reaction. Compared with pure TiO2, the conversion of phenol and selectivity to CO2 increases when adding rare earth elements, and the substitution of Si for Ti in an appropriate range also increases the conversion of phenol.  相似文献   

16.
董毅  王彤文 《工业催化》2017,25(10):27-33
在多巴胺修饰的水基TiO_2纳米微粒(TiO_2NPs)悬浮液中,以正硅酸乙酯为硅源,十六烷基三甲基溴化铵为模板剂,分别采用碱性水热方法或酸性溶胶-凝胶方法,制备了有序介孔TiO_2-SiO_2(TiO_2NPs/MCM-41或TiO_2NPs/SBA-3)。采用XRD、TEM、ICP和N2吸附-脱附实验对样品进行表征。结果表明,制备的介孔TiO_2-SiO_2在TiO_2高负载质量分数(23.98%TiO_2NPs/MCM-41、17.27%TiO_2NPs/SBA-3)时,仍能保持长程有序的介孔氧化硅结构。TiO_2NPs随机地嵌入在有序介孔氧化硅孔道所组成的网络结构中。在可见光下催化甲基橙降解反应中,反应时间120 min时,在P25上甲基橙相对浓度降为57%,在TiO_2NPs/MCM-41上降为33%,而在TiO_2NPs/SBA-3上降为5.7%。  相似文献   

17.
The photocatalytic efficiency of TiO2 immobilised on various supports (glass, cement, red brick and inorganic fibres), using different techniques (sputtering, sol–gel dip-coating, patented method for inorganic fibres), are compared with the photocatalytic efficiency of TiO2 Degussa P25 in suspension 2 g l−1, for the degradation of 3-nitrobenzenesulfonic acid (3-NBSA) and 4-nitrotoluenesulfonic acid (4-NTSA). In all cases, the fixation of TiO2 on solid supports appreciably reduces the photocatalytic efficiency. The best results were obtained with TiO2 on inorganic fibres.  相似文献   

18.
The typical physico-chemical properties and their hydrodesulfurization activities of NiMo/TiO2-Al2O3 series catalysts with different TiO2 loadings were studied. The catalysts were evaluated with a blend of two kinds of commercially available diesels in a micro-reactor unit. Many techniques including N2-adsorption, UV–vis DRS, XRD, FT-Raman, TPR, pyridine FT-IR and DRIFT were used to characterize the surface and structural properties of TiO2-Al2O3 binary oxide supports and the NiMo/TiO2-Al2O3 catalysts. The samples prepared by sol–gel method possessed large specific surface areas, pore volumes and large average pore sizes that were suitable for the high dispersion of nickel and molybdenum active components. UV–vis DRS, XRD and FT-Raman results indicated that the presence of anatase TiO2 species facilitated the formation of coordinatively unsaturated sites (CUS) or sulfur vacancies, and also promoted high dispersion of Mo active phase on the catalyst surfaces. DRIFT spectra of NO adsorbed on the pure MoS2 and the catalysts with TiO2 loadings of 15 and 30% showed that NiMo/TiO2-Al2O3 catalysts possessed more CUS than that of pure MoS2. HDS efficiencies and the above characterization results confirmed that the incorporation of TiO2 into Al2O3 could adjust the interaction between support and active metals, enhanced the reducibility of molybdenum and thus resulted in the high activity of HDS reaction.  相似文献   

19.
《Catalysis Today》2002,75(1-4):203-209
A new environmentally friendly method for the production of 2,3,5-trimethyl-1,4-benzoquinone (TMBQ, Vitamin E precursor) based on the oxidation of 2,3,6-trimethylphenol (TMP) with aqueous H2O2 over various Ti-containing mesoporous silicate materials is reported. Both well-organized Ti-containing mesoporous mesophase silicate (Ti-MMM), having hexagonal arrangement of uniform mesopores, and amorphous TiO2–SiO2 mixed oxides (aerogels and xerogels) produced TMBQ with good to high yield. All the materials studied have been proved to operate as truly heterogeneous catalysts. No titanium leaching occurred from the solid matrixes during the oxidation process. Titanium dispersion and its accessibility were found to be crucial factors determining the catalytic properties. For samples with similar titanium loading, both the catalytic activity and TMBQ yield appeared to fall in the order TiO2–SiO2 aerogel>Ti-MMM>TiO2–SiO2 xerogel and correlate with average mesopore diameter and mesopore volume. The best results (96–98% selectivity to TMBQ at 99–100% TMP conversion) were obtained with TiO2–SiO2 aerogels, containing 1.7–6.5 wt.% Ti.  相似文献   

20.
TiO2/ZSM-5 composites were prepared from SiO2 of rice husk ash and TiO2 sol from hydrolyzed TiOSO4 salt. The combined effect of these two materials greatly enhanced the photocatalytic decolorization of methylene blue dye solution. The instant decolorization of the dye solution in the dark by the composite, TiO2/ZSM-5 (wt ratio 1:1), resulted from the combination of the adsorption by ZSM-5 zeolite and TiO2 nano-particles, and of Na2SO4 salt adhering to the composite surface. As a strong flocculating agent, the SO42− ion caused the precipitation of the dye onto the composite surface which consequently enhanced the photocatalytic decolorization of the dye under UV irradiation. The composite, TiO2/ZSM-5 (wt ratio 1:5), completely decolorized the methylene blue dye in 2.5 h, giving an equivalent performance to that of TiO2, P-25 powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号