首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过优化的工艺制备了一种方形12 Ah铝塑膜软包装的风力发电锂离子动力电池,所制备电池的正负极活性物质分别为LiNi1/3Co11/3Mn1/3O2、钛酸锂(Li4Ti5O12),隔膜为25μm厚的聚乙烯.对所制备的电池在1.4~2.8V的条件下进行充放电测试,当常温下以4.0C循环6 000次时电池容量的保持率高于97%,且并未出现胀气现象;当高温下以0.5 C放电时容量为常温下的109.1%,且脉冲放电比功率最高为2 236 W/kg,当对5只100% SOC的电池串联后进行针刺测试时,并未出现起火爆炸等现象.  相似文献   

2.
研制以Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2、钛酸锂(Li_4Ti_5O_(12))分别为正、负极活性物质,25μm厚的聚乙烯为隔膜的方形(245 mm×160 mm×6 mm)12 Ah铝塑膜软包装锂离子电池。筛选电极材料、电解液配方,并通过优化工艺制作的电池在1.5~2.7 V充放电,在常温(25℃)下以4.00 C循环6 000次的容量保持率大于98%,且不胀气;以0.50 C放电,在高温(55℃)下的容量为常温时的108.2%;最高脉冲放电比功率为2 232 W/kg。5只100%SOC电池串联进行针刺测试,不起火、不爆炸。  相似文献   

3.
王赞霞  袁万颂 《电池》2016,(1):24-27
将不同粒径的LiMn_(0.7)Fe_(0.3)PO_4与LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2按质量比21∶73混合,用作锂离子电池正极活性物质。D50分别为9.31μm和4.32μm的LiMn_(0.7)Fe_(0.3)PO_4材料制备的极片,最大压实密度分别为3.03 g/cm3和3.10 g/cm3。制备的额定容量为5 Ah的04125136型电池,低倍率下的倍率放电性能相当;当放电倍率≥2.0 C时,放电容量受到粒径的影响,3.0 C首次放电容量(3.0~4.2 V)分别为0.3 C放电容量的80.9%(D50=9.31μm)和87.1%(D50=4.32μm);在低温-20℃下以0.3 C在3.0~4.2 V放电,首次放电容量分别为常温下的55.3%(D50=9.31μm)和61.2%(D50=4.32μm)。以小粒径LiMn_(0.7)Fe_(0.3)PO_4材料制得的混合正极制备的电池,具有较好的倍率性能、低温性能和安全性能。  相似文献   

4.
主要以聚乙烯为隔膜,锰酸锂(Li Mn2O4)、钛酸锂(Li4Ti5O12)为电池正负极的活性物质制备得到12 Ah软包装锂离子电池。通过选择合适的电解液配方及电极材料,并对制作工艺优化后制备可得实验电池。在1.6~2.8 V下对电池进行充放电实验发现,常温下以4.00 C循环5 000次时,电池的容量保持率仍大于96%;以0.50 C放电时,高温下其容量约为常温下的108.0%;最高脉冲放电比率为2 238 W/kg。  相似文献   

5.
赵永胜  韩恩山  黄金辉 《电池》2011,41(6):322-324
分别以LiNi1/3 Co1/3M n1/3 O2、Li4Ti5O12为正、负极活性物质,制备了18650型高功率锂离子电池.测试了不同倍率及温度下的充放电性能,考察了安全性能.制备的电池有良好的快速充电、倍率放电及高低温放电性能.以1C在1.20~2.80 V循环,在常温下循环200次的容量保持率在93%以上;在高温...  相似文献   

6.
黎明旭  刘艺  钱龙  王海涛 《电池》2016,(6):328-331
采用4种正极活性物质,设计32650型4.0 Ah钛酸锂(Li_4Ti_5O_(12))负极锂离子电池,评估充放电倍率性能、放电温升、低温放电性能、循环性能和安全性能。尖晶石镍锰酸锂(Li Ni0.5Mn1.5O4)正极电池的电压平台高(3.15 V),-20℃下的1 C放电(3.3~2.0 V)容量是常温时的83.16%,比能量为74.57 Wh/kg;磷酸铁锂(LiFePO_4)正极电池的电压平稳(1.70 V),适用于对电压要求严格的领域。三元材料正极电池中,镍钴锰酸锂(LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2)正极电池的各项性能较优,3 C循环3 486次的容量保持率为102.58%,可用于快充领域;镍钴铝酸锂(LiNi_(0.8)Co_(0.15)Al_(0.05)O_2)正极电池更适合于储能领域。  相似文献   

7.
混合电动汽车用高功率型锂离子电池   总被引:3,自引:3,他引:0  
庞静  卢世刚  杜纪磊  张刚  刘人敏  陈晓红 《电池》2004,34(3):159-160
研制了 40Ah混合电动汽车 (HEV)用高功率型锂离子动力电池。放电测试结果显示 :电池大电流输出能力良好 ,最大脉冲功率达 898W /kg。电池循环 2 0 0次 ( 2 5℃ ,1C)的容量保持率大于 90 % ,表现出优异的循环性能 ;电池 -2 0℃与 5 5℃的1C放电容量分别为常温下的 96 63 %和 10 3 % ,具有良好的温度适应能力。安全测试显示 :电池具有较强的抗过充能力  相似文献   

8.
以LiNi_(0.5)Co_(0.3)Mn_(0.3)O_2和尖晶石锰酸锂(LiMn_2O_4)的混合物为正极材料,人造石墨为负极材料,研制额定容量为19Ah的电动汽车用高比能量软包装动力锂离子电池。电池在2.8~4.2 V循环,0.33 C放电比能量大于150 Wh/kg;5.00 C持续放电容量保持率为94.7%;50%放电深度时,10 s脉冲放电的比功率大于2 500 W/kg;1.00 C循环1 000次,容量保持在额定容量的92.2%。电池在针刺、过充等安全测试时不起火、不爆炸。  相似文献   

9.
用固相法对钴酸锂(LiCoO2)正极材料进行纳米三氧化二铝(Al2O3)表面包覆,在充电终止电压为4.35 V时分析制备的495060AR型锂离子电池的性能。在放电截止电压为3.00 V时,以0.5 C放电,包覆、未包覆LiCoO2的比容量分别为167.6 mAh/g、170.9 mAh/g,平均电压分别为3.763 V、3.776 V;常温下1.0 C循环200次,包覆、未包覆LiCoO2的容量保持率分别为94.46%、96.40%。在55℃、48 h储存测试中,包覆LiCoO2制备的电池表现出更好的环境适应性;包覆LiCoO2制备的电池在高温45℃下以0.5 C循环200次,容量保持率为93.50%。对电池进行过充、热冲击测试,均未起火、爆炸。  相似文献   

10.
和祥运  陈中军 《电池》2015,45(2):103-105
测试镍钴锰三元正极材料(Li Ni1/3Co1/3Mn1/3O2)动力锂离子电池温度与开路电压的关系,电池开路电压随温度升高的下降率为0.63 m V/℃。当放电终止电压为3.00 V、充电截止电压4.15 V时,3只并联12只串联组成的电池系统(78 Ah、44 V)具有较好的循环性能,以1 C循环1 600次的容量保持率为86.5%。  相似文献   

11.
王正强 《电源技术》2017,(11):1584-1585,1592
采用烧结镍为正极,添加氧化亚钴和羰基镍粉的储氢材料为负极,聚乙烯(PE)/聚丙烯(PP)的复合物为隔膜,制备得到通信设备用富液式QNG90方形氢镍电池,对所得电池充放电时的温度变化及电化学性能进行测试,并与贫液式QNF90方形氢镍电池进行比较。当富液式电池以0.2 C充电6 h,温升为5.0℃;以1.0 C放电,温升为9.5℃。20℃下对电池进行倍率放电与低温放电测试结果表明,当富液式电池以10.0 C放电至0.8 V的放电容量为室温0.2 C放电容量的73.4%,-40℃下以0.2 C放电时容量为常温0.2 C放电容量的75.2%,50℃下满容量电池以1.436 V恒压浮充50 h,未出现热失控和电流失控,0.2 C充放电的循环次数超过1 100次。  相似文献   

12.
以LiNO_3、Ni(NO_3)_2·6 H_2O、Co(CH_3COO)_2·4 H_2O和Mn(CH_3COO)_2·4 H_2O为原料,用燃烧法制备了富锂层状锂离子电池正极材料Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2和不同La掺杂量的正极材料Li[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0,0.01,0.03,0.05)。对制备的样品进行了XRD、S EM、EDS、电池充放电循环、EIS等表征和测试,进一步分析了掺La量对该富锂正极材料结构、形貌及电化学性能的影响。实验结果表明,掺杂前后的四种材料都具有典型的层状α-Na FeO_2结构,说明掺杂后并未改变材料的层状结构;在2.0~4.7 V充放电,当电流为0.1 C(1 C=200 mA/g)时,制备的正极材料Li-[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0.03)具有最高的首次充放电比容量,分别为250.51和179.45 mAh/g,其首次库仑效率从Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2的63.5%提高到71.6%,以0.5 C循环50次,放电比容量保持在136.05 mAh/g。  相似文献   

13.
采用喷雾干燥法制备尖晶石Li_4Ti_5O_(12)。将所得Li_4Ti_5O_(12)与纳米Sb_2O_3混合后高能球磨得到Sb_2O_3掺杂的Li_4Ti_5O_(12)。经X射线衍射(XRD)测试,结果表明Sb_2O_3未进入Li_4Ti_5O_(12)尖晶石结构。经扫描电子显微镜(SEM)测试,结果表明高能球磨法使颗粒更小、更分散。采用充放电测试、循环伏安法和交流阻抗测试研究了Sb_2O_3对Li_4Ti_5O_(12)电化学性能的影响。研究结果表明,Sb_2O_3的掺杂能提高Li_4Ti_5O_(12)的电化学性能。在15 C的高电流密度下,循环10次后其放电比容量仍保持在113.7 mAh/g,远高于未掺杂的Li_4Ti_5O_(12)电极放电比容量(62.7 mAh/g)。交流阻抗测试结果表明,Sb_2O_3/Li_4Ti_5O_(12)电极的电化学性能改善的主要原因是其R_(CT)值较小。  相似文献   

14.
以LiOH为锂源,C_(16)H_(36)O_4Ti为钛源,采用液相法制备Li_4Ti_5O_(12)样品,并考察了烧结温度及热处理时间对材料的影响。为提高Li_4Ti_5O_(12)的导电性,实验选取PVA为碳源以制备Li_4Ti_5O_(12)/C材料。结果表明,Li_4Ti_5O_(12)经5%及10%质量分数的PVA热解处理后,所得Li_4Ti_5O_(12)/C的常温循环稳定性、倍率性能得到显著改善。5C倍率下60次充放电循环后,5%、10%质量分数Li_4Ti_5O_(12)/C材料分别可保持123mAh/g、125mAh/g的放电容量。  相似文献   

15.
张艳霞  王晨旭  王双双  谢佳 《电池》2013,43(1):41-44
使用锰酸锂(LiMn2O4)、镍钴锰酸锂(LiNi1/3 Co1/3Mn1/3O2)混合正极材料和钛酸锂(Li4 Ti5 O12)负极材料,制备了中倍率1865140型锂离子电池.制备的电池在12 min内可充满电池容量的80%以上,且电池表面温度不超过35℃;在室温下以2.00 C循环1 200次,容量保持率高于91%;在高温55℃下以1.00 C循环1 000次,容量保持率高于82%.FreedomCAR混合脉冲功率特性表明:在放电深度(DOD) 10% ~ 70%内、10s脉冲充放电状态下,电池的阻抗都在9 mΩ以下;50%DOD时的10s放电比功率为372 W/kg,充电比功率为520 W/kg.  相似文献   

16.
《电池》2020,(4)
用氢氧化亚钴[Co(OH)_2]包覆高镍三元正极材料LiNi_(0.85)Co_(0.10)Mn_(0.05)O_2,控制烧结温度,使Co(OH)_2分解为四氧化三钴(Co_3O_4)。半电池测试显示:包覆材料首次循环的放电比容量为202.4m Ah/g、库仑效率为87.7%,均高于未包覆材料。全电池测试显示:包覆材料制备的电池高温(45℃)循环性能更好,以0.50C充电、1.00C放电在2.80~4.20V循环300次,容量保持率为93.3%,而未包覆材料制备的电池为90.2%。电位滴定和SEM分析表明:包覆的Co(OH)_2在烧结过程中能与LiNi_(0.85)Co_(0.10)Mn_(0.05)O_2的表面残碱(LiOH/Li_2CO_3)反应,降低表面残碱含量。XRD测试显示:包覆材料的Ni/Li混排降低,微观应变减小。电化学阻抗谱显示:包覆材料的电荷转移阻抗降低,因此具有更好的电化学性能。  相似文献   

17.
采用XRD分析和充放电测试,研究氧化铝(Al_2O_3)掺杂量x对锂离子正极材料LiNi_(1/3)Co_(1/3-x)Mn_(1/3)Al_xO_2(x=0、1/40、1/20和1/10)性能的影响。当Al_2O_3掺杂量为1/20时,所得LiNi_(1/3)Co_(1/3-1/20)Mn_(1/3)Al_(1/20)O_2材料的结晶度较好且完整,混排度较低。以0.1 C在2.0~4.8 V充放电,正极材料的首次放电比容量为264.47 mAh/g,第20次循环的容量保持率为93.01%,库仑效率为98.37%。  相似文献   

18.
《电池》2015,(3)
以钴酸锂(LiCoO2)为正极活性物质、钛酸锂(Li4Ti5O12)为负极活性物质,制备204468型锂离子电池。该电池在2.7~1.5 V循环,3.00 C放电容量可达0.50 C时的92.9%;以0.50 C、2.00 C、3.00 C循环1 200次,容量保持率均在99%以上。电池以3.00 C倍率过充到15 V,没有爆炸、起火,表面最高温度不超过120℃;经短路实验后,没有出现漏液、爆炸和起火现象,表面最高温度不超过65℃;经针刺测试后,没有爆炸、起火,表面最高温度不超过30℃。  相似文献   

19.
采用草酸盐共沉淀法合成了掺杂Eu的锂离子电池正极材料LiNi_(1/3)Co_(1/3-x)Mn_(1/3)Eu_xO_2(x=0、0.2%、0.4%、0.6%和0.8%)。采用X射线衍射(XRD)和扫描电镜(SEM)对材料的结构和形貌进行了表征。通过LAND CT2001A电池测试系统对所制得样品进行电化学性能测试。结果表明:掺杂Eu后的样品都具有典型的a-NaFeO_2的特征层状结构,且晶型良好。掺杂量x=0.4%的样品粒径均匀,约为0.4~1 mm,团聚现象较少。充放电测试证实该样品在0.7 C下首次放电比容量为116.3 mAh/g,50次循环后放电比容量为114.1 mAh/g,容量保持率为98.12%,高于未掺杂样品的88.36%。  相似文献   

20.
汪涛  杨尘  许鹏  于维珂 《电池》2020,(2):153-156
通过加速量热(ARC)、直流内阻(DCIR)测试及容量增量分析(ICA),研究IFR 32131型磷酸铁锂(LiFePO4)/C电池以1.00 C在2.00~3.65 V充放电时的热特性。电池在充电和放电末期,均出现温度快速上升的过程,且放电发热量较充电高出1 801.6 J;充放电的热功率拐点都出现在LiFePO4的准二元相变电压区间外,表明末期的快速温升为电池极化导致,且放电极化大于充电;放电DCIR比充电高。对比高区间(20%~100%)、中区间(10%~90%)和低区间(0~80%)等3种电压区间内电池80%放电深度(DOD)的循环性能,中区间电池的循环性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号