首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高密度球形LiFePO4的合成及性能   总被引:25,自引:3,他引:25  
通过控制结晶法制备球形前驱体FePO_4·xH_2O,经过预烧得到高密度的FePO_4,与Li_2CO_3和葡萄糖均匀混合,采用碳热还原法合成锂离子蓄电池正极材料球形磷酸铁锂(LiFePO_4)。用X光衍射和扫描电镜分析对FePO_4和LiFePO_4的结构进行了表征。充放电测试表明LiFePO_4具有3.4V放电电压平台,在0.1mA/cm2电流密度条件下,首次充电比容量为146.9mAh/g,放电比容量为129.7mAh/g。该球形LiFePO4粉末的振实密度高达1.8g/cm3,首次放电比容量高达233.5mAh/cm3,远高于一般非球形LiFePO_4正极材料。  相似文献   

2.
采用多羟基溶剂热法合成微米尺度的LiFePO_4/C正极材料,系统研究了碳含量对LiFePO_4/C材料电化学性能的影响。通过X射线衍射谱图分析650℃下合成的样品晶胞体积最大且有利于锂离子的扩散;经过恒电流充放电测试,发现碳质量含量在3%时,材料具有较高的放电比容量(大于160 mAh/g);通过倍率性能比较,经过碳包覆的样品比纯相磷酸亚铁锂材料有明显的提升。  相似文献   

3.
以Fe(NO_3)_3·9H_2O、LiNO_3、NH_4H_2PO_4和石墨烯为原料,用溶胶-凝胶法制备磷酸铁锂(LiFePO_4)材料和LiFePO_4/石墨烯复合材料。用XRD、拉曼光谱、SEM、透射电镜(TEM)及充放电测试,研究样品的晶体结构、形貌和电化学性能。样品具有典型的橄榄石结构,复合的石墨烯能减小LiFePO4的颗粒尺寸,石墨烯与LiFePO_4能很好地融合在一起。LiFePO_4/石墨烯复合材料的电化学性能较好:在2.0~3.8V循环,0.2C和1.0C首次放电比容量分别为164mAh/g和153mAh/g,较LiFePO_4提高了7mAh/g。1.0C第100次循环的放电比容量为152mAh/g,容量保持率为99%。  相似文献   

4.
采用高温固相反应将电解MnO_2超细粉制备成粒度较大、结晶度较高的Mn_3O_4,再以其为锰源成功合成了LiMn_2O_4锂离子电池正极材料。采用X射线粉末衍射仪、扫描电镜、激光粒度分析仪、振实密度测试仪、比表面积测试仪及电化学充放电测试仪分别对合成材料的结构、形貌、粒度分布、振实密度、比表面积及电化学性能进行了表征测试。结果表明,合成的LiMn_2O_4材料晶体结构完整,为立方尖晶石结构,中粒度D(50)为8.88μm,振实密度为1.75 g/cm~3;在3.0~4.2 V(vs.Li/Li~+)充放电电压范围内,0.2 C(1 C=120 mA/g)首次放电比容量为121.5 mAh/g,100周循环容量保持率为90.8%,5 C放电比容量为0.2 C的76.8%,表现出优良的循环稳定性和倍率性能。  相似文献   

5.
通过碳热还原,合成了不同钒掺杂量(x)的球形碳包覆磷酸铁锂(LiFePO4/C)材料LiFe1-xVxPO4/C。循环伏安和恒流充放电测试表明,适当的钒掺杂能改善材料的电化学性能。x=0.05的材料,电化学性能较好,以0.1 C在2.5~4.2 V充放电,首次放电比容量为151.1 mAh/g,10.0 C倍率时,放电比容量仍能维持在104.4 mAh/g左右。  相似文献   

6.
LiFePO_4锂离子电池的低温性能   总被引:2,自引:1,他引:1  
采用循环伏安和充放电测试研究了LiFePO4和碳负极材料的低温性能.LiFePO4在25℃时的0.1 C和0.3 C放电比容量分别为156 mAh/g和148 mAh/g,在-20℃时分别为91 mAh/g和65 mAh/g.碳负极材料在-20℃下以0.1 C和0.3 C放电,几乎可放出25℃时的全部比容量.约330 mAh/g.LiFePO4是LiFePO4锂离子电池低温容量的主要影响因素.  相似文献   

7.
多孔前驱体渗碳制备LiFePO4/C   总被引:1,自引:1,他引:0  
用控制结晶法制备了多孔前驱体FePO4·xH2O,将葡萄糖和Li2CO3渗入到前驱体中,然后通过碳热还原反应合成LiFePO4/C.采用XRD、SEM、恒流充放电和交流阻抗等方法对样品进行了研究.反应剩余的碳分布在LiFePO4颗粒的内部及表面,提高了材料的电化学性能.在620℃下合成的LiFePO4/C的0.1C、0.5C和1C首次放电比容量分别为156mAh/g、139mAh/g和136mAh/g,循环30次后的容量衰减率仅为0.64%、2.16%和4.41%.该样品虽然含碳9.74%,但振实密度仍有1.20g/cm3.  相似文献   

8.
前期处理工序对LiFePO_4/C性能的影响   总被引:1,自引:1,他引:0  
介绍了六种前期处理工序来优化碳包覆工艺,并通过碳热还原法合成LiFePO4/C复合材料,采用X射线衍射光谱法(XRD),扫描电子显微镜法(SEM)和电化学手段对产物进行结构、形貌表征和电化学性能测试。结果显示,最优材料振实密度可达1.45g/mL,并表现出优良的电化学性能。室温下材料在5C时,首次放电比容量为89.6mAh/g。循环30次后,比容量为83.9mAh/g,衰减仅2.0%。  相似文献   

9.
球形LiFePO4的制备及电化学性能   总被引:7,自引:3,他引:4  
于春洋  夏定国  赵煜娟  王忠丽 《电池》2006,36(6):432-434
以(NH4)3C6H5O7为络合剂,通过控制结晶法制备了球形NH4FePO4.H2O,并研究了反应温度、滴加速度、搅拌速度和反应物浓度等对颗粒形态的影响。以球形NH4FePO4.H2O为前驱体,制备了球形LiFePO4,振实密度达1.08 g/cm3。充放电测试结果表明:样品在0.05C下的首次放电比容量为77.3 mAh/g;在0.05C、0.10C和0.50C下分别循环20次后,样品的放电比容量分别为77.2 mAh/g、54.7 mAh/g和42.7 mAh/g。  相似文献   

10.
采用高温固相法合成LiFePO4/C正极材料,并对其物理特性和电化学性能进行了分析。研究结果表明,该材料具有较高的振实密度、均匀的粒度分布、较小的比表面积,且具有单一的橄榄石结构,没有其它杂相。实验电池测试表明,材料具有较高的放电比容量及平稳的放电平台,0.2C充放电时,放电比容量达到152.5mAh/g。为了进一步评估该材料的循环性能,制造了以该材料为正极活性物质的2.2Ah标准软包装锂离子电池。电池经3000次充放电循环,其放电容量仍有1 919mAh,放电容量保持率为84.5%,结果表明材料的循环稳定性能优良。  相似文献   

11.
唐琛明  王兴威  杨锴  沙永香 《电池》2007,37(3):229-230
为了提高球形Ni(OH)2的电化学性能,在球形Ni(OH)2表面喷涂钴盐溶液,通过烘干、碱化等工序后得到的覆钴球形Ni(OH)2,对它进行了XRD、粉末微电极循环伏安模拟充放电实验,并制备成样品电池进行测试.包覆3.0%钴的材料导电性好,振实密度为2.05g/ml,制成的电极1 C放电比容量为260 mAh/g,10 C放电比容量为228 mAh/g.  相似文献   

12.
以三氧化二铁(Fe2O3)为铁源,葡萄糖为还原剂和碳源,在优化条件[n(Li)∶ n(Fe)=1.05∶1.00,100 g前驱体加入1.50 g葡萄糖,在650 ℃下焙烧15 h]下制备碳包覆磷酸铁锂(LiFePO4/C).产物为橄榄石型晶相,无明显的杂质相,振实密度为1.18 g/cm3.在4.2~2.5V循环,0.1C、0.5C、2.0C下的首次放电比容量分别为139.4 mAh/g、120.4 mAh/g和102.0 mAh/g,第30次循环的放电比容量分别为138.0 mAh/g、121.9 mAh/g和92.4 mAh/g,材料的结构没有变化.  相似文献   

13.
通过超高压处理溶胶-凝胶前驱体,以高温固相法制备磷酸铁锂(LiFePO_4)/C。用恒流充放电、循环伏安和交流阻抗等方法研究产物的电化学性能,并进行XRD、SEM等分析。超高压处理并没有改变LiFePO_4材料的晶体结构和充放电反应机理。与未经超高压处理的前驱体相比,超高压预处理的前驱体制备的材料粒径减小,均匀性提高,0.1 C首次放电容量达148.47 mAh/g、在平台电压范围内的放电容量增加约16.3 mAh/g,经过不同倍率共40次循环,容量保持率达98.2%,且倍率放电性能得到提高,欧姆阻抗和电化学反应阻抗减小。  相似文献   

14.
基于水合肼和乙二醇的协同作用,在甘氨酸辅助下通过水热液相合成法微纳组装制备LiNi_(0.5)Mn_(1.5)O_4微球。微纳组装结构兼具微米和纳米材料的优点:二次微米结构可缓解Li~+嵌脱过程中材料体积的变化,改善材料振实密度;一次纳米粒子可缩短离子扩散路径,扩大电极-电解液接触面积。该特殊结构使材料的比容量、循环性能和倍率性能都得到提高。在3.3~5.0 V充放电,0.1 C放电比容量可达135.0 mAh/g;以1.0 C循环200次,放电比容量稳定在120.0 mAh/g,容量保持率为89%。  相似文献   

15.
提出了一种绿色的废旧电池LiFePO_4正极材料中温回收路线,并通过回收料中各种元素配比的控制和简单的热处理,实现了LiFePO_4正极的再生。从煅烧温度、煅烧时间及物料比三个方面优化了再生的工艺条件。通过X射线衍射谱(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电进行了分析,结果表明高纯度球形LiFePO_4/C再生正极,在0.1 C率时的首次放电比容量为133.8 mAh/g,1 C下循环300次容量保持率达92.5%,性能接近商品化LiFePO_4材料。  相似文献   

16.
钛铌氧化物TiNb_2O_7具有大功率充放电,长循环寿命,高理论容量的特点,是开发高能量密度锂离子电池有前景的负极材料之一。然而,TiNb_2O_7(TNO)的电子传导率差和Li+扩散系数低是其显著缺点和需要改进的难点。采用高能球磨和碳包覆改性,制备碳包覆改性的纳米钛铌氧化物材料TNO-0.02C。在1 C倍率下,TNO-0.02C的放电比容量为280mAh/g,而未进行碳包覆改性的TNO材料的放电比容量为240 mAh/g。在20 C大倍率充放电下,TNO材料仅表现出135 mAh/g的放电比容量,而TNO-0.02C的放电比容量达到154 mAh/g。在1 C倍率下,TNO-0.02C和TNO两种材料在循环100次后,放电比容量没有显著降低。结果表明,采用葡萄糖作为碳源对钛铌氧化物TNO进行包覆改性后,其电化学性能显著提高。  相似文献   

17.
不同碳源制备LiFePO_4/C复合正极材料   总被引:2,自引:1,他引:1  
分别以乙炔黑和蔗糖为碳源用固相碳热还原法制备了两种不同碳含量的LiFePO_4/C正极材料。利用X射线衍射(XRD)、扫描电镜(SEM)等测试手段对合成材料进行了表征,通过恒流充放电和循环伏安测试研究了材料的电化学性能。结果表明:所合成的LiFePO_4均为纯相,但是用蔗糖的样品颗粒更细小,电化学性能明显优于用乙炔黑的样品,其中含碳9.3%的样品0.1、1C倍率下的放电比容量分别为139、116mAh/g,且循环性能良好。  相似文献   

18.
利用扫描电子显微镜、恒流充放电、循环伏安及交流阻抗等方法研究了直流刻蚀铝集流体及对锂离子电池LiFePO_4正极性能的影响。经直流刻蚀后的铝集流体表面形成均匀的蜂窝状结构,使活性材料与之相互"啮合",LiFePO_4正极0.2 C和2 C首次放电比容量分别由133和87 mAh/g升高到139和120 mAh/g,循环稳定性、电化学阻抗等性能得到了改善。  相似文献   

19.
采用熔盐-碳热还原法制备了LiFePO4正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗(EIS)和充放电测试对粉末样品进行了表征。结果表明,合成材料具有完整的橄榄石结构,颗粒粒径约1μm且粒度分布均匀,材料0.2 C首次放电比容量为156.4 mAh/g,1 C首次放电比容量为141.2 mAh/g,循环50次后1 C比容量增至141.7mAh/g,表现出优异的电化学性能。  相似文献   

20.
以H3PO4、Fe2O3、LiOH·H2O和葡萄糖为原料,利用H2还原制备了LiFePO4/C复合材料,并进行了XRD、SEM、碳含量和振实密度分析,以及电化学性能测试。制备的LiFePO4/C复合材料的含碳量为1.9%,振实密度为1.4g/cm3;0.1C、1.0C首次放电比容量分别为148.4mAh/g和128.4mAh/g,1.0C循环60次的容量保持率为98.8%。通过机理研究,发现了反应的中间产物Li3PO4、Li3Fe2(PO4)3、Fe2Fe(P2O7)2和LiFeP2O7。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号