首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Helsen  Y. Guo  J. Keller  P. Guillaume 《风能》2016,19(12):2255-2269
This work investigates the behaviour of the high‐speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full‐scale wind turbine nacelle is used. A combination of external and internal gearbox measurements are analysed. Particular focus is on the characterization of the high‐speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as a potential bearing failure initiator; however, only limited full‐scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing behaviour in detail. It is shown that during the transient event the high‐speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals, indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical formulation was developed to estimate the load‐sharing and planetary loads of a three‐point suspension wind turbine drivetrain considering the effects of non‐torque loads, gravity and bearing clearance. A three‐dimensional dynamic drivetrain model that includes mesh stiffness variation, tooth modifications and gearbox housing flexibility was also established to investigate gear tooth load distribution and non‐linear tooth and bearing contact of the planetary gears. These models were validated with experimental data from the National Renewable Energy Laboratory's Gearbox Reliability Collaborative. Non‐torque loads and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox loads and disturb load sharing. Clearance in the carrier bearings reduces the bearing stiffness significantly. This increases the amount of pitching moment transmitted from the rotor to the gear meshes and disturbs the planetary load share, thereby resulting in edge loading. Edge loading increases the likelihood of tooth pitting and planet‐bearing fatigue, leading to reduced gearbox life. Additionally, at low‐input torque, the planet‐bearing loads are often less than the minimum recommended load and thus susceptible to skidding. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Non‐torque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling and experimental approaches to evaluate two distinct drivetrain designs that minimize the effects of non‐torque loads on gearbox reliability: a modified three‐point suspension drivetrain studied by the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) and the Pure Torque® drivetrain developed by Alstom. In the original GRC drivetrain, the unequal planetary load distribution and sharing were present and they can lead to gear tooth pitting and reduce the lives of the planet bearings. The NREL GRC team modified the original design of its drivetrain by changing the rolling element bearings in the planetary gear stage. In this modified design, gearbox bearings in the planetary gear stage are anticipated to transmit non‐torque loads directly to the gearbox housing rather than the gears. Alstom's Pure Torque drivetrain has a hub support configuration that transmits non‐torque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces and the resulting drivetrain loads. In Alstom's Pure Torque drivetrain, main shaft bending loads are orders of magnitude lower than the rated torque and hardly affected by wind speed, gusts or turbine operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Y. Guo  J. Keller 《风能》2018,21(2):139-150
Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high‐speed parallel‐stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. This paper examined wind turbine gearbox high‐speed shaft bearing loads and stresses through modeling and full‐scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure‐torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.  相似文献   

5.
This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped‐parameter approach. Three extreme events are assessed: low‐voltage ride through, emergency stop and normal stop. The analysis is focused on finding which event has the most negative impact on the bearing extreme radial loads. The two latter events are carried out following the guidelines of the International Electrotechnical Commission standard 61400‐1. The former is carried out by applying a voltage fault while simulating the wind turbine under normal turbulent wind conditions. The voltage faults are defined by following the guidelines from four different grid codes in order to assess the impact on the bearings. The results show that the grid code specifications have a dominant role in the maximum loads achieved by the bearings during a low‐voltage ride through. Moreover, the emergency brake shows the highest impact by increasing the bearing loads up to three times the rated value. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Z. Jiang  Y. Xing  Y. Guo  T. Moan  Z. Gao 《风能》2015,18(4):591-611
This paper presents an approach for performing a long‐term fatigue analysis of rolling element bearings in wind turbine gearboxes. Multilevel integrated analyses were performed using the aeroservoelastic code HAWC2, the multibody dynamics code SIMPACK, the three‐dimensional finite element code Calyx and a simplified lifetime prediction model for rolling contact fatigue. The National Renewable Energy Laboratory's 750 kW wind turbine and its planetary bearing were studied. Design load cases, including normal production, parked and transient load cases, were considered. To obtain the internal bearing load distribution, an advanced approach combining a finite element/contact mechanics model and a response surface model were used. In addition, a traditional approach, the Harris model, was also applied for comparison. The long‐term probability distribution of the bearing raceway contact pressure range was then obtained using Weibull and generalized Gamma distribution functions. Finally, we estimated the fatigue life of the bearing, discussed the differences of the methods used to obtain the bearing internal loads and analyzed the effects of the environmental conditions and load cases on the results. The Harris model may underestimate the inner raceway life by 55.7%, which can cause large load fluctuations along the raceways. The bearing fatigue life is very sensitive to the wind distribution and less affected by the transient and parked load cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses the effect of gear geometrical errors in wind turbine planetary gearboxes with a floating sun gear. Numerical simulations and experiments are employed throughout the study. A National Renewable Energy Laboratory 750 kW gearbox is modelled in a multibody environment and verified using the experimental data obtained from a dynamometer test. The gear geometrical errors, which are both assembly dependent and assembly independent, are described, and planet‐pin misalignment and eccentricity are selected as the two most influential and key errors for case studies. Various load cases involving errors in the floating and non‐floating sun gear designs are simulated, and the planet‐bearing reactions, gear vibrations, gear mesh loads and bearing fatigue lives are compared. All tests and simulations are performed at the rated wind speed. For errorless gears, the non‐floating sun gear design performs better in terms of gear load variation, whereas the upwind planet bearing has more damage. In the floating sun gear scenario, the planet misalignment is neutralized by changing the sun motion pattern and the planet gear's elastic deformation. The effects of gear profile modifications are also evaluated, revealing that profile modifications such as crowning improve the effects of misalignment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Recent data shows that 90% of large wind turbines include a gearbox, and industry forecasts expect this figure to remain relatively stable. With global annual volumes (2009) of around 18,600 units, the quality, cost and performance of gearboxes is of paramount importance to the wind sector. The industry has been focusing some attention on gearbox reliability, as demonstrated by a growth in the number of specific seminars and collaborative programs on this topic. One aspect that needs to be brought to an industry‐wide forum is the understanding of the complexity of bearing design in the gearbox and the careful attention that needs to be paid to ensure a reliable gearbox design. This paper seeks to address this issue by clear demonstration of design issues using a model of the gearbox from the National Renewable Energy Lab's Gearbox Reliability Collaborative. Detailed models are presented with focus on determining the quality of the function of the planetary gear stages. Key design drivers are discussed such as the quality of alignment at the gears and bearings and the loads and stresses seen on these components. Under a design load case with a significant rotor off‐axis moment the stresses in the planet gears and bearings are investigated. It is shown how the misalignment of the planet pins varies with the rotation of the planetary set and how subsequently time‐varying contact stresses and load distributions occur in the planet gears and bearings. These factors strongly influence the fatigue life of the gearbox components as well as the level of vibration. Design tools are then used to demonstrate how small variations in the clearances of the planet carrier bearings can have a big effect on the quality of the design. Numerical studies show where optimal clearance settings lie and how the misalignment of the planetary set can be improved. Furthermore, a demonstration is made of how redesign of the bearing arrangement and subsequent optimization of the planet tooth geometry further improves the misalignment and results in significantly reduced time‐varying contact stresses, better load distribution and reduced vibration. It is illustrated that small clearances, such as in the carrier bearings, can have a large effect on the performance of the design and a study shows how to identify and reduce time‐varying misalignment and contact stresses resulting in lower vibration, lower fatigue and a more reliable product. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This work develops an optimization algorithm for the definition of gear microgeometry modifications (MGM) on a gearbox belonging to an offshore 10-MW wind turbine. Subsequently, the impact of the gear microgeometry on the performance of gears and bearings is quantified: First, under rated load conditions and, second, accounting for the environmental conditions to estimate the long-term damage. To fulfil this task, a high-fidelity numerical model of the drivetrain is used, which meets the design requirements of the Technical University of Denmark (DTU) 10-MW reference offshore wind turbine. The optimization achieves a uniform distribution of the contact stress along the tooth flank, shifts its maximum value to the central position, and eliminates edge contact. These enhancements increase the gear safety factors. Nevertheless, the most significant improvement concerns planetary bearings, for which optimum gear MGM achieve a homogeneous share of the load among bearings. Moreover, deviations of the microgeometry with respect to the defined optimum are also addressed. In gears, lead slope deviations are counteracted by crowning modifications to restrain the increase of the load offset. Concerning planetary bearings, slope deviations can be beneficial or detrimental depending on whether they overload downwind or upwind planetary bearings, respectively. Finally, accumulated damage to planetary bearings after 20 years of service is assessed. Before MGM, results predict a premature failure of planetary bearings, while optimum MGM extend their predicted life above 20 years by achieving a reduction of the maximum accumulated fatigue damage by a factor of 4.4.  相似文献   

10.
Noise and vibration issues can be dealt with using several approaches. Using the source–transfer path–receiver approach, a vibration issue could be solved by attenuating the source, modifying the transfer path or by influencing the receiver. Applying this approach on a wind turbine gearbox would respectively correspond with lowering the gear excitation levels, modifying the gearbox housing or by trying to isolate the gearbox from the rest of the wind turbine. This paper uses a combination of multi‐body modelling and typical transfer path analysis (TPA) to investigate the impact of bearings on the total transfer path and the resulting vibration levels. Structural vibrations are calculated using a flexible multi‐body model of a three‐stage wind turbine gearbox. Because the high‐speed mesh is often the main source of vibrations, focus is put on the four bearings of this gear stage. The TPA method using structural vibration simulation results shows which bearing position is responsible for transmitting the highest excitation levels from the gears to the gearbox housing structure. Influences of bearing stiffness values and bearing damping values on the resulting vibration levels are investigated by means of a parameter sensitivity study and are confirmed with the results from the TPA. Because both the TPA and the parameter sensitivity analysis revealed a big influence on radial stiffness for a certain bearing, this was investigated in more detail and showed the big importance of correct axial bearing position. The main conclusions of this paper are that the total vibration behaviour of a wind turbine gearbox can be altered significantly by changing both bearing properties such as stiffness, damping and position, and bearing support stiffness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Y. Xing  T. Moan 《风能》2013,16(7):1067-1089
There have been some recent efforts to numerically model and analyse the wind turbine gearbox. To date, much of the focus has been on increasing model refinement and demonstrating its added value. This paper takes a step back and examines in detail the modelling and analysis of an important wind turbine gearbox component, the planet carrier, in a multi‐body setting. The planet carrier studied in this work comes from the 750 kW wind turbine gearbox used in the National Renewable Energy Laboratory's Gearbox Reliability Collaborative project. The study is performed in two parts. First, the influence of subcomponents mated to the planet carrier in the gearbox assembly is investigated in detail. These components consist of the planet pins, bearings and the main shaft. In the second part of the study, the flexible body modelling of the planet carrier for use in multi‐body simulations is examined through the use of condensed finite element and multi‐body simulation models. Both eigenvalue analyses and time domain simulations are performed. Comparisons are made regarding the eigenfrequencies, categorized mode shapes and the maximum and minimum planet carrier rim deflections from the time domain simulations. The mode shapes are categorized into seven distinct deformation patterns. An actual load case from the dynamometer tests, a 100% rated torque loading, is used in the time domain simulations. The results from this comprehensive study provide an insight into the proper modelling of a wind turbine planet carrier in a multi‐body setting. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Faults in planetary gears and related bearings, e.g. planet bearings and planet carrier bearings, pose inherent difficulties on their accurate and consistent detection associated mainly to the low energy in slow rotating stages and the operating complexity of planetary gearboxes. In this work, statistical features measuring the signal energy and Gaussianity are calculated from the residual signals between each pair from the first to the fifth tooth mesh frequency of the meshing process in a multi‐stage wind turbine gearbox. The suggested algorithm includes resampling from time to angular domain, identification of the expected spectral signature for proper residual signal calculation and filtering of any frequency component not related to the planetary stage. Two field cases of planet carrier bearing defect and planet wheel spalling are presented and discussed, showing the efficiency of the followed approach and the possibility of characterizing a fault as localized or distributed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
15.
The main concern of the present publication is the computation of dynamic loads of wind turbine power trains, with particular emphasis on planetary gearbox loads. The applied mathematical approach relies on a non‐linear finite element method, which is extended by multi‐body system functionalities, and aerodynamics based on the blade element momentum theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
建立一种针对表面硬化滚道三排圆柱滚子风电主轴轴承的疲劳寿命分析方法。首先,在卡迪尔坐标系中建立三排圆柱滚子风电主轴轴承的5自由度力学模型,分析计算在外部5个方向载荷联合作用下轴承的内部滚子载荷分布;然后,建立圆柱滚子与表面硬化滚道之间的弹塑性接触有限元模型,计算得到滚子接触载荷作用下滚道次表面的脉动应力分布;最后,根据Goodman方程将滚道脉动应力幅值转化为交变应力幅值,运用Basquin应力-寿命理论计算得到风电主轴轴承的疲劳寿命。结果表明,轴承的下风向外圈滚道承受来自风轮的推力载荷,其疲劳寿命最短;径向外圈滚道承受风轮的重力载荷,其疲劳寿命最长。轴承的疲劳寿命取决于下风向滚道。  相似文献   

17.
This paper investigates the relationship between wind turbine main‐bearing loads and the characteristics of the incident wind field in which the wind turbine is operating. For a 2‐MW wind turbine model, fully aeroelastic multibody simulations are performed in 3D turbulent wind fields across the wind turbine's operational envelope. Hub loads are extracted and then injected into simplified drivetrain models of three types of main‐bearing configuration. The main‐bearing reaction loads and load ratios from the simplified model are presented and analysed. Results indicate that there is a strong link between wind field characteristics and the loading experienced by the main bearing(s), with the different bearing configurations displaying very different loading behaviours. Main‐bearing failure rates determined from operational data for two drivetrain configurations are also presented.  相似文献   

18.
Four‐contact‐point slewing bearings are widely used in wind turbine generators (WTGs) to adjust the orientation of the blades and the nacelle to fully exploit wind resources. These bearings must withstand static and fatigue loads; however, at the first stages of the design process, the bearings are commonly selected by considering only static loads. This paper presents a further step of a previous theoretical work published by the authors in the field of the static load‐carrying capacity of four‐contact‐point slewing bearings under axial, radial and tilting‐moment loads. In that work, a generalization of the works by Sjoväll and Rumbarger was presented, providing an acceptance surface of the bearing in the load space. The contact angle of the balls was assumed to be load independent. The present work improves that development by considering the influence of the variability of the contact angle with the applied load, and as a result, the acceptance surface has been redefined. By comparing the results with those of the finite element model published by the authors, it is proven that the new model presented in this work is more realistic than the previous one. Thus, it is believed that this methodology can be easily applied for the initial selection of blade and yaw bearings in WTGs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
B. J. Gould  D. L. Burris 《风能》2016,19(6):1011-1021
Recent studies suggest that wind shear and the resulting pitch moments increase bearing loads and thereby contribute to premature wind turbine gearbox failure. In this paper, we use momentum‐based modeling approaches to predict the pitch moments from wind shear. The non‐dimensionalized results, which have been validated against accepted aeroelastic results, can be used to determine thrust force, pitch moment and power of a general rotor as a function of the wind shear exponent. Even in extreme wind shear (m = 1), the actual thrust force and power for a typical turbine (R* < 0.5) were within 8% and 20% of the nominal values (those without wind shear), respectively. The mean pitch moment increased monotonically with turbine thrust, rotor radius and wind shear exponent. For extreme wind shear (m = 1) on a typical turbine (R* = 0.5), the mean pitch moment is ~25% the product of thrust force and rotor radius. Analysis of wind shear for a typical 750 kW turbine revealed that wind shear does not significantly affect bearing loads because it counteracts the effects of rotor weight. Furthermore, even though general pitch moments did significantly increase bearing loads, they were found to be unlikely to cause bearing fatigue. Analyses of more common low wind‐speed cases suggest that bearing under‐loading and wear are more likely to contribute to premature bearing failure than overloading and classical surface contact fatigue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Conducting a further analysis on loading sharing among compound planetary gear system in wind turbine gearbox, and making a meshing error analysis on the eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of wind turbine gearbox respectively. In view of the floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of all gears, this paper establishes a refined mathematical model of two-stage power split loading sharing coefficient calculation in consideration of multiple errors. Also obtains the regular curves of the load sharing coefficient and floating orbits of center gears, and conducts a load sharing coefficient test experiment of compound planetary gear system to verify the research results, which can provide scientific theory evidence for proper tolerance distribution and control in design and process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号