首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scott Larwood  C.P. van Dam 《风能》2013,16(6):879-907
Because of their aeroelastic behavior, swept wind turbine blades offer the potential to increase energy capture and lower fatigue loads. This article describes work to develop a dynamic analysis code for swept wind turbine blades. This work was an outgrowth of a U.S. Department of Energy contract on swept blades, where the authors used the Adams? dynamic software (MSC Software Corporation, Santa Ana, CA, USA). The new code is based on the National Renewable Energy Laboratory's FAST code and allows for lower cost analysis and faster computation times for swept blades. The additions to the FAST code include the geometry and mode shapes required for the bending and twisting motion of the swept blade. In addition, a finite element program to determine mode shapes for the swept blade was developed. Comparisons of results obtained with the new code and analytical solutions for a curved cantilever beam show good agreement in local torsional deflections. Comparisons with field data obtained for a 750 kW wind turbine with swept blades were complicated by uncertainties in the test wind speed and turbine controller settings.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Ozan Gzcü  Mathias Stolpe 《风能》2020,23(5):1317-1330
The wind turbine industry is designing large MW size turbines with very long blades, which exhibit large deflections during their operational life. These large deflections decrease the accuracy of linear models such as linear finite element and modal‐based models, in which the structure is represented by linear mode shapes. The aim of this study is to investigate the competence of the mode shapes to represent the large blade responses in normal operation load cases. For this purpose, blade deflections are projected onto the linear modal space, swept by mode shape vectors. The projection shows the contribution of each mode and the projection error. The blade deflections are calculated by a nonlinear aero‐servo‐elastic solver for power production fatigue load cases with normal turbulence. The mode shapes are calculated at the steady‐state deflected blade position computed at different wind speeds. Three reference turbine blades are used in the study to evaluate the effects of various blade design parameters such as length, stiffness, mass, and prebend. The results show that although the linear mode shapes can represent the flapwise and edgewise deflections accurately, axial and torsional deflections cannot be captured with good accuracy. The geometric nonlinear effects are more apparent in the latter directions. The results indicate that the blade deflections occur beyond the linear assumptions.  相似文献   

3.
变桨距风力机叶片的气动优化设计   总被引:1,自引:0,他引:1  
首先利用Wilson方法进行叶片的外形初步设计,然后以设计攻角作为变量,以额定风速下功率系数最大为优化目标,建立了1 MW变桨距风力机叶片气动外形优化模型,采用遗传算法进行了优化再设计。通过对3叶片1 MW风力机进行的气动性能评价结果表明,优化后的风力机具有更好的气动性能,说明采用该优化方法进行变桨距风力机设计具有明显的优越性。  相似文献   

4.
Downwind wind turbine blades are subjected to tower wake forcing at every rotation, which can lead to structural fatigue. Accurate characterisation of the unsteady aeroelastic forces in the blade design phase requires detailed representation of the aerodynamics, leading to computationally expensive simulation codes, which lead to intractable uncertainty analysis and Bayesian updating. In this paper, a framework is developed to tackle this problem. Full, detailed aeroelastic model of an experimental wind turbine system based on 3‐D Reynolds‐averaged Navier‐Stokes is developed, considering all structural components including nacelle and tower. This model is validated against experimental measurements of rotating blades, and a detailed aeroelastic characterisation is presented. Aerodynamic forces from prescribed forced‐motion simulations are used to train a time‐domain autoregressive with exogenous input (ARX) model with a localised forcing term, which provides accurate and cheap aeroelastic forces. Employing ARX, prior uncertainties in the structural and rotational parameters of the wind turbine are introduced and propagated to obtain probabilistic estimates of the aeroelastic characteristics. Finally, the experimental validation data are used in a Bayesian framework to update the structural and rotational parameters of the system and thereby reduce uncertainty in the aeroelastic characteristics.  相似文献   

5.
Anders Ahlstrm 《风能》2006,9(3):237-249
Most aeroelastic codes used today assume small blade deflections and application of loads on the undeflected structure. However, with the design of lighter and more flexible wind turbines, this assumption is not obvious. By scaling the system mass and stiffness properties equally, it is possible to compare wind turbines of different degrees of slenderness and at the same time keep system frequencies the same in an undeformed state. The developed model uses the commercial finite element system MSC. Marc, focused on non‐linear design and analysis, to predict the structural response. The aerodynamic model AERFORCE, used to transform the wind to loads on the blades, is a blade element momentum model. A comparison is made between different slenderness ratios in three wind conditions below rated wind speed. The results show that large blade deflections have a major influence on power production and the resulting structural loads and must be considered in the design of very slender turbines. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero‐elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero‐elastic behaviour of a real wind turbine, the code employs 11 basic degrees of freedom corresponding to 11 elastic structural equations. In the BEM theory, a refined tip loss correction model is used. The objective of the optimization model is to minimize the cost of energy which is calculated from the annual energy production and the cost of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero‐elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used in the European Commision‐sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero‐elastic results are examined against the FLEX code for flow past the Tjæreborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 kW experimental rotor, the Tjæreborg 2 MW rotor and the NREL 5 MW virtual rotor) are applied. The results show that the optimization model can reduce the cost of energy of the original rotors, especially for the investigated 2 MW and 5 MW rotors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
B. S. Joyce  J. Farmer  D. J. Inman 《风能》2014,17(6):869-876
The long composite blades on large wind turbines experience tremendous stresses while in operation. There is an interest in implementing structural health monitoring (SHM) systems inside wind turbine blades to alert maintenance teams of damage before serious component failure occurs. This paper proposes using an energy harvesting device inside the blade of a horizontal axis wind turbine to power a SHM system. The harvester is a linear induction energy harvester placed radially along the length of the blade. The rotation of the blade causes a magnet to slide along a tube as the blade axis changes relative to the direction of gravity. The magnet induces a voltage in a coil around the tube, and this voltage powers the SHM system. This paper begins by discussing motivation for this project. Next, a harvester model is developed, which encompasses the mechanics of the magnet, the interaction between the magnet and the coil, and the current in the electrical circuit. A free fall test verifies the electromechanical coupling model, and a rotating test examines the power output of a prototype harvester. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Mitigating loads on a wind turbine rotor can reduce the cost of energy. Sweeping blades produces a structural coupling between flapwise bending and torsion, which can be used for load alleviation purposes. A multidisciplinary design optimization (MDO) problem is formulated including the blade sweep as a design variable. A multifidelity approach is used to confront the crucial effects of structural coupling on the estimation of the loads. During the MDO, ultimate and damage equivalent loads are estimated using steady‐state and frequency‐domain–based models, respectively. The final designs are verified against time‐domain full design load basis aeroelastic simulations to ensure that they comply with the constraints. A 10‐MW wind turbine blade is optimized by minimizing a cost function that includes mass and blade root flapwise fatigue loading. The design space is subjected to constraints that represent all the necessary requirements for standard design of wind turbines. Simultaneous aerodynamic and structural optimization is performed with and without sweep as a design variable. When sweep is included in the MDO process, further minimization of the cost function can be obtained. To show this achievement, a set of optimized straight blade designs is compared to a set of optimized swept blade designs. Relative to the respective optimized straight designs, the blade mass of the swept blades is reduced of an extra 2% to 3% and the blade root flapwise fatigue damage equivalent load by a further 8%.  相似文献   

9.
An aeroelastic model for wind turbine blades derived from the unsteady Navier‐Stokes equations and a mode shape–based structural dynamics model are presented. For turbulent flows, the system is closed with the Spalart‐Allmaras turbulence model. The computation times for the aerodynamic solution are significantly reduced using the harmonic balance method compared to a time‐accurate solution. This model is significantly more robust than standard aeroelastic codes that rely on blade element momentum theory to determine the aerodynamic forces. Comparisons with published results for the Caradonna‐Tung rotor in hover and the classical AGARD 445.6 flutter case are provided to validate the aerodynamic model and aeroelastic model, respectively. For wind turbines, flutter of the 1.5 MW WindPACT blade is considered. The results predict that the first flapwise and edgewise modes dominate flutter at the rotor speeds considered.  相似文献   

10.
This short communication reports on a radar approach for structural health monitoring of wind turbine blades. Therefore, a bistatic frequency‐modulated continuous wave (FMCW) radar in the frequency range from 33.4 to 36.0 GHz has been developed and tested experimentally using a laboratory wind turbine demonstrator. A differential damage localization framework is presented here that exploits signal differences between measurements from the intact and the damaged structure for 3D imaging of the defect. We have achieved the localization of a 30‐mm cut in a glass fiber composite structure as well as the localization of a water pack at the backside of the specimen with a localization error of several centimeters.  相似文献   

11.
A preliminary design study of an advanced 50 m blade for utility wind turbines is presented and discussed. The effort was part of the Department of Energy WindPACT Blade System Design Study with the goal to investigate and evaluate design and manufacturing issues for wind turbine blades in the 1–10 MW size range. Two different blade designs are considered and compared in this article. The first is a fibreglass design, while the second design selectively incorporates carbon fibre in the main structural elements. The addition of carbon results in modest cost increases and provides significant benefits, particularly with respect to blade deflection. The structural efficiency of both designs was maximized by tailoring the thickness of the blade cross‐sections to simplify the construction of the internal members. Inboard the blades incorporate thick blunt trailing edge aerofoils (flatback aerofoils), while outboard more conventional sharp trailing edge high‐lift aerofoils are used. The outboard section chord lengths were adjusted to yield the least complex and costly internal blade structure. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of studs has a positive effect on total weight, because it reduces the required root laminate thickness. The aerodynamic performance of the blade aerofoils was predicted using computational techniques that properly simulate blunt trailing edge flows. The performance of the rotor was predicted assuming both clean and soiled blade surface conditions. The rotor is shown to provide excellent performance at a weight significantly lower than that of current rotors of this size. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A numerical tool for investigating the aeroelastic stability of a single wind turbine blade subjected to combined flap/lead–lag motion is presented. Its development is motivated by recent concern about destructive edgewise vibrations of modern stall‐controlled blades. The stability tool employs a finite element formulation to discretize in space the structural and aerodynamic governing equations. Unsteady aerodynamics is considered by means of the extended ONERA lift and drag models. The mathematical form of these models allows for a combined treatment of dynamics and aerodynamics through the introduction of a so‐called ‘aeroelastic beam element’. This is an extended two‐node beam element having both deformation and aerodynamic degrees of freedom. Several linear and non‐linear versions of the stability tool are available, differing in the way that instantaneous lift and/or drag is treated. In the linear case, stability is investigated through eigenvalue analysis. Time domain integration is employed for non‐linear stability analysis. Results are presented and discussed for a 17 m stall‐controlled blade. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The cost of offshore wind energy can be reduced by incorporating control strategies to reduce the support structures' load effects into the structural design process. While effective in reducing the cost of support structures, load‐reducing controls produce potentially costly side effects in other wind turbine components and subsystems. This paper proposes a methodology to mitigate these side effects at the wind farm level. The interaction between the foundation and the surrounding soil is a major source of uncertainty in estimating the safety margins of support structures. The safety margins are generally closely correlated with the modal properties (natural frequencies, damping ratios). This admits the possibility of using modal identification techniques to reassess the structural safety after installing and commissioning the wind farm. Since design standards require conservative design margins, the post‐installation safety assessment is likely to reveal better than expected structural safety performance. Thus, if load‐reducing controls have been adopted in the structural design process, it is likely permissible to reduce the use of these during actual operation. Here, the probabilistic outcome of such a two‐stage controls adaptation is analyzed. The analysis considers the structural design of a 10 MW monopile offshore wind turbine under uncertainty in the site‐specific soil conditions. Two control strategies are considered in separate analyses: (a) tower feedback control to increase the support structure's fatigue life and (b) peak shaving to increase the support structure's serviceability capacity. The results show that a post‐installation adaptation can reduce the farm‐level side‐effects of load‐reducing controls by up to an order of magnitude.  相似文献   

14.
Jiacong Yin  Wei Liu  Pu Chen 《风能》2012,15(6):864-881
A modal re‐analysis approach is proposed for refinement designs of rotary wind turbine blades on the basis of matrix perturbation methods. The approach entails effects of stress stiffening, spin softening, uncertainty of material properties and structural modifications of blades. Three perturbation methods are used to conduct the re‐analysis approach, including the standard perturbation method and two improvements proposed by H. C. Hu and S. H. Chen, respectively. Numerical results of a typical wind turbine blade indicate that the two improved methods deliver better accuracy than the standard perturbation method in terms of eigenpairs. In application to blade designs, Chen's method is suitable for a multi‐step modal re‐analysis with explicit small parameters and cultivates the first‐order and second‐order perturbations of eigenpairs as well. In contrast, Hu's method is a better choice for a single‐step modal re‐analysis without determining any small parameter explicitly and directly offers approximate eigenpairs instead of somehow tedious perturbation processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine the characteristics of stall. The model is applied to wind turbine rotor cases, including the stand still condition, and results are compared to experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Wind turbine rotors are normally designed such that rotor power coefficient is maximized. Much of this methodology has been inherited from the aviation industry. This paper points out that designing machines for maximum rotor aerodynamic efficiency does not necessarily lead to a lower levelized cost of energy. The argument sits on the premise that levelized cost of energy is strongly influenced by machine capital expenditure (CAPEX) and annual energy production (AEP). We therefore assume that the true design objective is to minimize the CAPEX/AEP ratio. The basis of an alternative design path is presented, which centres on the minimization of total volume of structural material in the wind turbine. This is done whilst maintaining a given rated power. This alternative methodology requires the removal of conventional pre‐set design variables and assumptions which relate to the maximization of rotor power coefficient. We examine how changing chord length, axial induction factor and aerofoil lift coefficient affect material volume in the blade. Following this, we use a custom‐made blade element momentum programme to explore the relative CAPEX of machines with varying design axial induction factor and varying lift coefficient. This relative cost is calibrated to the 5 MW National Renewable Energy Laboratory offshore reference turbine. The effects on the rotor, drivetrain and tower are considered. For a 5 MW offshore machine, it is shown that an overall CAPEX/AEP reduction of over 2% can be achieved by using a low‐induction rotor with blades possessing aerofoils operating at non‐peak lift to drag ratios. This economy is delivered notwithstanding a 2.3% drop in design rotor power coefficient. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A generalized computational methodology for reduced order acoustic‐structural coupled modeling of the aeroacoustics of a wind turbine blade is presented. This methodology is used to investigate the acoustic pressure distribution in and around airfoils to guide the development of a passive damage detection approach for structural health monitoring of wind turbine blades for the first time. The output of a k ? ε turbulence model computational fluid dynamics simulation is used to calculate simple acoustic sources on the basis of model tuning with published experimental data. The methodology is then applied to a computational case study of a 0.3048‐m chord NACA 0012 airfoil with two internal cavities, each with a microphone placed along the shear web. Five damage locations and four damage sizes are studied and compared with the healthy baseline case for three strategically selected acoustic frequencies: 1, 5, and 10 kHz. In 22 of the 36 cases in which the front cavity is damaged, the front cavity microphone measures an increase in sound pressure level (SPL) above 3 dB, while rear cavity damage only results in six out of 24 cases with a 3‐dB increase in the rear cavity. The 1‐ and 5‐kHz cases show a more consistent increase in SPL than the 10‐kHz case, illustrating the spectral dependency of the model. The case study shows how passive acoustic detection could be used to identify blade damage, while providing a template for application of the methodology to investigate the feasibility of passive detection for any specific turbine blade.  相似文献   

18.
Large wind turbine blades are being developed at lengths of 75–100 m, in order to improve energy capture and reduce the cost of wind energy. Bending loads in the inboard region of the blade make large blade development challenging. The “biplane blade” design was proposed to use a biplane inboard region to improve the design of the inboard region and improve overall performance of large blades. This paper focuses on the design of the internal “biplane spar” structure for 100-m biplane blades. Several spars were designed to approximate the Sandia SNL100-00 blade (“monoplane spar”) and the biplane blade (“biplane spar”). Analytical and computational models are developed to analyze these spars. The analytical model used the method of minimum total potential energy; the computational model used beam finite elements with cross-sectional analysis. Simple load cases were applied to each spar and their deflections, bending moments, axial forces, and stresses were compared. Similar performance trends are identified with both the analytical and computational models. An approximate buckling analysis shows that compressive loads in the inboard biplane region do not exceed buckling loads. A parametric analysis shows biplane spar configurations have 25–35% smaller tip deflections and 75% smaller maximum root bending moments than monoplane spars of the same length and mass per unit span. Root bending moments in the biplane spar are largely relieved by axial forces in the biplane region, which are not significant in the monoplane spar. The benefits for the inboard region could lead to weight reductions in wind turbine blades. Innovations that create lighter blades can make large blades a reality, suggesting that the biplane blade may be an attractive design for large (100-m) blades.  相似文献   

19.
Numerical simulations of rain droplet impacts on real rough surfaces of leading edges of wind turbine blades are presented. The effect of rough blade surface conditions during liquid impacts on the stress distribution in the protective coating is studied. Realistic rough surfaces of wind turbine blades, obtained from 3D reconstruction of real blades with photogrammetry, as well as artificially generated rough surfaces were introduced into finite element models of the droplet/blade coating interaction. Stress distributions in the protective coating with rough and flat surfaces were studied and compared. The results of the simulations suggest that roughness on the surface of the blade leads to increased stresses in the protective coating.  相似文献   

20.
文章给出了风力机叶片的动力特性计算模型、结构体模态应变能的概念及其计算模型,定义了结构体损伤状态下的模态应变能变化率概念并给出其计算模型。在此基础上,以15 kW风力机叶片为研究对象,在ANSYS中建立有限元分析模型,计算该叶片在不同损伤位置与不同损伤程度下的频率以及模态应变能变化率,并以模态应变能变化率作为表征结构损伤的标识量,对含损伤的风力机叶片结构进行损伤辨识仿真。通过神经网络建立起损伤标识量和损伤状态之间的映射模型,为实现叶片损伤的诊断提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号