首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this report is to present a model of a rigid‐rotor system based on computational fluid dynamics (CFD), which is applied on a vertical axis wind turbine (VAWT) research. Its originality results from the use of the average value of the variable rotational speed method taken in a periodic steady‐state (PSS) of the VAWT rotor instead of the classical fixed rotational speed method. This approach was chosen in order to determine the mechanical and aerodynamic parameters of the wind turbine. The modeling method uses an implicit Euler iterative solution strategy, which resolves the coupling between fixed and moving rotor domains. The main methods that were adopted are based on the three‐dimensional modeling of the interaction of the fluid flow with a rigid‐rotor. The strategy consists of using the Reynolds averaged Navier Stokes (RANS) equations with the standard k‐ ? and SST k‐ ω models to solve the fluid flow problem. To perform the rigid‐rotor motion in a fluid, the one degree of freedom (1‐DOF) method was applied. In the present study, the steady‐state and dynamic CFD simulations of the Savonius rotor are adopted to contribute to the validation elements of the VAWT models that are used. The dynamic study allows the investigation of the rotor behavior and the relation between velocity, pressure, and vorticity fields in and around the rotor blades. The flow fields generated by the rotation of the Savonius rotor were investigated in the half revolution period of the rotor angle θ from 0° to 180°. In this range of θ, the focus is on generating and dissipating vortices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Simulations of wind turbine loads for the NREL 5 MW reference wind turbine under diabatic conditions are performed. The diabatic conditions are incorporated in the input wind field in the form of wind profile and turbulence. The simulations are carried out for mean wind speeds between 3 and 16 m s ? 1 at the turbine hub height. The loads are quantified as the cumulative sum of the damage equivalent load for different wind speeds that are weighted according to the wind speed and stability distribution. Four sites with a different wind speed and stability distribution are used for comparison. The turbulence and wind profile from only one site is used in the load calculations, which are then weighted according to wind speed and stability distributions at different sites. It is observed that atmospheric stability influences the tower and rotor loads. The difference in the calculated tower loads using diabatic wind conditions and those obtained assuming neutral conditions only is up to 17%, whereas the difference for the rotor loads is up to 13%. The blade loads are hardly influenced by atmospheric stability, where the difference between the calculated loads using diabatic and neutral input wind conditions is up to 3% only. The wind profiles and turbulence under diabatic conditions have contrasting influences on the loads; for example, under stable conditions, loads induced by the wind profile are larger because of increased wind shear, whereas those induced by turbulence are lower because of less turbulent energy. The tower base loads are mainly influenced by diabatic turbulence, whereas the rotor loads are influenced by diabatic wind profiles. The blade loads are influenced by both, diabatic wind profile and turbulence, that leads to nullifying the contrasting influences on the loads. The importance of using a detailed boundary‐layer wind profile model is also demonstrated. The difference in the calculated blade and rotor loads is up to 6% and 8%, respectively, when only the surface‐layer wind profile model is used in comparison with those obtained using a boundary‐layer wind profile model. Finally, a comparison of the calculated loads obtained using site‐specific and International Electrotechnical Commission (IEC) wind conditions is carried out. It is observed that the IEC loads are up to 96% larger than those obtained using site‐specific wind conditions.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The design of floating wind turbines needs the validation of numerical models against measurements obtained from experiments that accurately represent the system dynamics. This requires solving the conflict in the scaling of the hydrodynamic and aerodynamic forces that arises in tests with wind and waves. To sort out this conflict, we propose a hybrid testing method that uses a ducted fan to replace the rotor and introduce a force representing the aerodynamic thrust. The force is obtained from a simulation of the rotor coupled in real time with the measured platform displacements at the basin. This method is applied on a test campaign of a semisubmersible wind turbine with a scale factor of 1/45. The experimental data are compared with numerical computations using linear and non‐linear hydrodynamic models. Pitch decays in constant wind show a good agreement with computations, demonstrating that the hybrid testing method correctly introduces the aerodynamic damping. Test cases with constant wind and irregular waves show better agreement with the simulations in the power spectral density's (PSD's) low‐frequency region when non‐linear hydrodynamics are computed. In cases with turbulent wind at rated wind speed, the low‐frequency platform motions are dominated by the wind, hiding the differences from hydrodynamic non‐linearities. In these conditions, the agreement between experiments using the proposed hybrid method and computations is good in all the frequency range both for the linear and the non‐linear hydrodynamic models. Conversely, for turbulent winds producing lower rotor thrust, non‐linear hydrodynamics are relevant for the simulation of the low‐frequency system dynamics.  相似文献   

4.
The aerodynamics generated by a small small‐scale vertical axis wind turbine are illustrated in detail as a NACA0022 rotor blade carries out a complete rotation at three tip speed ratios. These aerodynamic details are then linked to the wind turbine performance. This is achieved by using detailed experimental measurements of performance and near‐blade particle image velocimetry (PIV) and also by using a two‐dimensional Reynolds‐averaged Navier–Stokes‐based computational fluid dynamics (CFD) model. Uniquely, therefore, the CFD model is validated against both PIV visualizations and performance measurements. At low tip speed ratios ( λ = 2), the flow field is dominated by large‐scale stalling behaviour as shown in both the experimental results and simulations. The onset of stall appears to be different between the experiment and simulation, with the simulation showing a gradual separation progressing forward from the trailing edge, while the experiment shows a more sudden leading‐edge roll‐up. Overall, similar scales of vortices are shed at a similar rate in both the experimental results and simulations. The most significant CFD–PIV differences are observed in predicting flow re‐attachment. At a higher tip speed ratio ( λ = 3), the flow separates slightly later than in the previous condition, and as occurs in the lower tip speed ratio, the main differences between the experiment and the simulation are in the flow re‐attachment process, specifically that the simulations predicts a delay in the process. At a tip speed ratio of 4, smaller predicted flow separation in the latter stages of the upwind part of the rotation is the main difference in comparison to the experiment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper describes power performance measurements undertaken on a model floating wind turbine installed on a tension‐leg platform (TLP) in a wind/wave generator facility. Initially, the surge of the platform was measured under different rotor and wave conditions. The surge behaviour depended considerably on the rotor tip speed ratio and the wave frequency and amplitude. High‐frequency data sampling techniques were then used to derive the instantaneous power coefficient and tip speed ratio directly from the measurements, together with the surge velocity of the floating system. The power measurements were compared with those predicted by three independent numerical models, two of which are based on the blade element momentum approach and the third involving a lifting‐line free‐wake vortex model. The fluctuations of the power coefficient with time predicted by the three models were in close agreement; however, these were all significantly larger than those derived from the rotor shaft torque measurements. This was found to be due to the limitations of the torque measurement technique. Although being accurate in measuring the time‐averaged torque, the sensor was incapable of measuring the high‐frequency low‐amplitude fluctuations in the rotor shaft torque induced by the TLP surge. This was confirmed using an alternative experimental technique involving hot‐wire near‐wake measurements. The study also investigated the influence of the platform surge motion on the time‐averaged power coefficients. Both the measurements and the free‐wake vortex model revealed marginal deviations in the time‐averaged power coefficients when compared with those obtained for a fixed, non‐surging rotor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The performance characteristics and the near wake of a model wind turbine were investigated experimentally. The model tested is a three‐bladed horizontal axis type wind turbine with an upstream rotor of 0.90 m diameter. The performance measurements were conducted at various yaw angles, a freestream speed of about 10 m s ?1, and the tip speed ratio was varied from 0.5 to 12. The time‐averaged streamwise velocity field in the near wake of the turbine was measured at different tip speed ratios and downstream locations. As expected, it was found that power and thrust coefficients decrease with increasing yaw angle. The power loss is about 3% when the yaw angle is less than 10° and increases to more than 30% when the yaw angle is greater than 30°. The velocity distribution in the near wake was found to be strongly influenced by the tip speed ratio and the yaw angle. At the optimum tip speed ratio, the axial velocity was almost uniform within the midsection of the rotor wake, whereas two strong peaks are observed for high tip speed ratios when the yaw angle is 0°. As the yaw angle increases, the wake width was found to be reduced and skewed towards the yawed direction. With increasing downstream distance, the wake velocity field was observed to depend on the tip speed ratio and more pronounced at high tip speed ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Large eddy simulations (LES) of the flow past a wind turbine with and without tower and nacelle have been performed at 2 tip speed ratios (TSR, ), λ=3 and 6, where the latter corresponds to design conditions. The turbine model is placed in a virtual wind tunnel to reproduce the “Blind test 1” experiment performed at the Norwegian University of Science and Technology (NTNU) closed‐loop wind tunnel. The wind turbine was modeled using the actuator line model for the rotor blades and the immersed boundary method for the tower and nacelle. The aim of the paper is to highlight the impact of tower and nacelle on the turbine wake. Therefore, a second set of simulations with the rotating blades only (neglecting the tower and nacelle) has been performed as reference. Present results are compared with the experimental measurements made at NTNU and numerical simulations available in the literature. The tower and nacelle not only produce a velocity deficit in the wake but they also affect the turbulent kinetic energy and the fluxes. The wake of the tower interacts with that generated by the turbine blades promoting the breakdown of the tip vortex and increasing the mean kinetic energy flux into the wake. When tower and nacelle are modeled in the numerical simulations, results improve significantly both in the near wake and in the far wake.  相似文献   

8.
A simple engineering model for predicting wind farm performance is presented, which is applicable to wind farms of arbitrary size and turbine layout. For modeling the interaction of wind farm with the atmospheric boundary layer (ABL), the wind farm is represented as added roughness elements. The wind speed behind each turbine is calculated using a kinematic model, in which the friction velocity and the wind speed outside the turbine wake, constructed based on the wind farm‐ABL interaction model, are employed to estimate the wake expansion rate in the crosswind direction and the maximum wind speed that can be recovered within the turbine wake, respectively. Validation of the model is carried out by comparing the model predictions with the measurements from wind tunnel experiments and the Horns Rev wind farm. For all validation cases, satisfactory agreement is obtained between model predictions and experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Prediction and control of rotor rotational velocity is critical for accurate aerodynamic loading and generator power predictions. A variable-speed generator-torque controller is combined with the two-phase CFD solver CFDShip-Iowa V4.5. The developed code is utilized in simulations of the 5 MW floating offshore wind turbine (FOWT) conceptualized by the National Renewable Energy Laboratory (NREL) for the Offshore Code Comparison Collaboration (OC3). Fixed platform simulations are first performed to determine baseline rotor velocity and developed torque. A prescribed platform motion simulation is completed to identify effects of platform motion on rotor torque. The OC3’s load case 5.1, with regular wave and steady wind excitation, is performed and results are compared to NREL’s OC3 results. The developed code is shown to functionally control generator speed and torque but requires controller calibration for maximum power extraction. Generator speed variance is observed to be a function of unsteady stream-wise platform motions. The increased mooring forces of the present model are shown to keep the turbine in a more favorable variable-speed control region. Lower overall platform velocity magnitudes and less rotor torque are predicted corresponding to lower rotor rotational velocities and a reduction in generated power. Potential improvements and modifications to the present method are considered.  相似文献   

11.
Wind measurements were performed with the UTD mobile LiDAR station for an onshore wind farm located in Texas with the aim of characterizing evolution of wind‐turbine wakes for different hub‐height wind speeds and regimes of the static atmospheric stability. The wind velocity field was measured by means of a scanning Doppler wind LiDAR, while atmospheric boundary layer and turbine parameters were monitored through a met‐tower and SCADA, respectively. The wake measurements are clustered and their ensemble statistics retrieved as functions of the hub‐height wind speed and the atmospheric stability regime, which is characterized either with the Bulk Richardson number or wind turbulence intensity at hub height. The cluster analysis of the LiDAR measurements has singled out that the turbine thrust coefficient is the main parameter driving the variability of the velocity deficit in the near wake. In contrast, atmospheric stability has negligible influence on the near‐wake velocity field, while it affects noticeably the far‐wake evolution and recovery. A secondary effect on wake‐recovery rate is observed as a function of the rotor thrust coefficient. For higher thrust coefficients, the enhanced wake‐generated turbulence fosters wake recovery. A semi‐empirical model is formulated to predict the maximum wake velocity deficit as a function of the downstream distance using the rotor thrust coefficient and the incoming turbulence intensity at hub height as input. The cluster analysis of the LiDAR measurements and the ensemble statistics calculated through the Barnes scheme have enabled to generate a valuable dataset for development and assessment of wind farm models.  相似文献   

12.
In the present study, unsteady flow features and the blade aerodynamic loading of the National Renewable Energy Laboratory phase VI wind turbine rotor, under yawed flow conditions, were numerically investigated by using a three‐dimensional incompressible flow solver based on unstructured overset meshes. The effect of turbulence, including laminar‐turbulent transition, was accounted for by using a correlation‐based transition turbulence model. The calculations were made for an upwind configuration at wind speeds of 7, 10 and 15 m/sec when the turbine rotor was at 30° and 60° yaw angles. The results were compared with measurements in terms of the blade surface pressure and the normal and tangential forces at selected blade radial locations. It was found that under the yawed flow conditions, the blade aerodynamic loading is significantly reduced. Also, because of the wind velocity component aligned tangent to the rotor disk plane, the periodic fluctuation of blade loading is obtained with lower magnitudes at the advancing blade side and higher magnitudes at the retreating side. This tendency is further magnified as the yaw angle becomes larger. At 7 m/sec wind speed, the sectional angle of attack is relatively small, and the flow remains mostly attached to the blade surface. At 10 m/sec wind speed, leading‐edge flow separation and strong radial flow are observed at the inboard portion of the retreating blade. As the wind speed is further increased, the flow separation and the radial flow become more pronounced. It was demonstrated that these highly unsteady three‐dimensional aerodynamic features are well‐captured by the present method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Forfloating offshore wind turbines, rotors are under coupled motions of rotating and platform‐induced motions because of hydrodynamics impacts. Notably, the coupled motion of platform pitching and rotor rotating induces unsteadiness and nonlinear aerodynamics in turbine operations; thus having a strong effect on the rotor performances including thrust and power generation. The present work aims at developing a computational fluid dynamics model for simulations of rotor under floating platform induced motions. The rotor motion is realized using arbitrary mesh interface, and wind flows are modelled by incompressible Navier‐Stokes flow solver appended by the k  ? ω shear stress transport turbulence model to resolve turbulence quantities. In order to investigate the fully coupled motion of floating wind turbine, the six degree of freedom solid body motion solver is extended to couple with multiple motions, especially for the motion of rotor coupled with the prescribed surge‐heave‐pitch motion of floating platform. The detailed methodology of multiple motion coupling is also described and discussed in this work. Both steady and unsteady simulations of offshore floating wind turbine are considered in the present work. The steady aerodynamic simulation of offshore floating wind turbine is implemented by the multiple reference frames approach and for the transient simulation, the rotor motion is realized using arbitrary mesh interface. A rigorous benchmark of the present numerical model is performed by comparing to the reported literatures. The detailed elemental thrust and power comparisons of wind turbine are carried out by comparing with the results from FAST developed by National Renewable Energy Laboratory and various existing numerical data with good agreement. The proposed approach is then applied for simulations of National Renewable Energy Laboratory 5MW turbine in coupled platform motion at various wind speeds under a typical load case scenario. Transient effect of flows over turbines rotor is captured with good prediction of turbine performance as compared with existing data from FAST. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
An experimental study of the near wake up to four rotor diameters behind a model wind turbine rotor with two different wing tip configurations is performed. A straight‐cut wing tip and a downstream‐facing winglet shape are compared on the same two‐bladed rotor operated at its design tip speed ratio. Phase‐averaged measurements of the velocity vector are synchronized with the rotor position, visualizing the downstream location of tip vortex interaction for the two blade tip configurations. The mean streamwise velocity is found not to be strongly affected by the presence of winglet tip extensions, suggesting an insignificant effect of winglets on the time‐averaged inflow conditions of a possible downstream wind turbine. An analysis of the phase‐averaged vorticity, however, reveals a significantly earlier tip vortex interaction and breakup for the wingletted rotor. In contradistinction, the tip vortices formed behind the reference configuration are assessed to be more stable and start merging into larger turbulent structures significantly further downstream. These results indicate that an optimized winglet design can not only contribute to a higher energy extraction in a rotor's tip region but also can positively affect the wake's mean kinetic energy recovery by stimulating a faster tip vortex interaction.  相似文献   

15.
The flow upstream a wind turbine is studied in order to investigate blockage effects. We use rotating wind turbine models in a wind tunnel, where velocity measurements have been made both with hot‐wire anemometry up to approximately 4.5 diameters (D) upstream the turbine, as well as laser particle image velocimetry measurements close to the turbine rotor. Also, numerical simulations have been carried out by means of a finite volume code. The measurements show, among other things, that the flow is affected more than 3 D upstream the rotor plane. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Spatially resolved measurements of microscale winds are retrieved using scanning dual‐Doppler lidar and then compared with independent in situ wind measurements. Data for this study were obtained during a month‐long field campaign conducted at a site in north‐central Oklahoma in November of 2010. Observational platforms include one instrumented 60 m meteorological tower and two scanning coherent Doppler lidars. The lidars were configured to perform coordinated dual‐Doppler scans surrounding the 60 m tower, and the resulting radial velocity observations were processed to retrieve the three‐component velocity vector field on surfaces defined by the intersecting scan planes. The dual‐Doppler analysis method is described, and three‐dimensional visualizations of the retrieved fields are presented. The retrieved winds are compared with sonic anemometer (SA) measurements at the 60 m level on the tower. The Pearson correlation coefficient between the retrievals and the SA wind speeds was greater than 0.97, and the wind direction difference was very small (<0.1o), suggesting that the dual‐Doppler technique can be used to examine fine‐scale variations in the flow. However, the mean percent difference between the SA and dual‐Doppler wind speed was approximately 15%, with the SA consistently measuring larger wind speeds. To identify the source of the discrepancy, a multi‐instrument intercomparison study was performed involving lidar wind speeds derived from standard velocity‐azimuth display (VAD) analysis of plan position indicator scan data, a nearby 915 MHz radar wind profiler (RWP) and radiosondes. The lidar VAD, RWP and radiosondes wind speeds were found to agree to within 3%. By contrast, SA wind speeds were found to be approximately 14% larger than the lidar VAD wind speeds. These results suggest that the SA produced wind speeds that were too large. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A validation study using the National Renewable Energy Laboratory (NREL) Phase VI wind turbine is presented. The aerodynamics simulations are performed using the finite element arbitrary Lagrangian–Eulerian–variational multiscale formulation augmented with weakly enforced essential boundary conditions. In all cases, the rotor is assumed to be rigid and its rotation is prescribed. The rotor‐only simulations are performed for a wide range of wind conditions, and the computational results compare favorably with the experimental findings in all cases. The sliding‐interface method is adopted for the simulation of the full wind turbine configuration. The full‐wind‐turbine simulations capture the blade–tower interaction effect, and the results of these simulations are also in good agreement with the experimental data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the proof of concept of a smart rotor is illustrated by aeroelastic simulations on a small‐scale rotor and comparison with wind tunnel experiments. The application of advanced feedback controllers using actively deformed flaps in the wind tunnel measurements is shown to alleviate dynamic loads leading to considerable fatigue load reduction. The numerical method for aeroelastically simulating such an experiment is described, together with the process of verifying the methods for accurate prediction of the load reduction potential of such concepts. The small‐scale rotor is simulated using the aeroelastic tool, load predictions are compared with the wind tunnel measurements, and similar control concepts are compared and evaluated in the numerical environment. Conclusions regarding evaluation of the performance of smart rotor concepts for wind turbines are drawn from this threefold research investigation (simulation, experiment and comparison). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The use of upstream wind measurements has motivated the development of blade‐pitch preview controllers for improving rotor speed tracking and structural load reduction beyond that achievable via conventional feedback control. Such preview controllers, typically based upon model predictive control (MPC) for its constraint handling properties, alter the closed‐loop dynamics of the existing blade‐pitch feedback control system. This can result in a deterioration of the robustness properties and performance of the existing feedback control system. Furthermore, performance gains from utilising the upcoming real‐time measurements cannot be easily distinguished from the feedback control, making it difficult to formulate a clear business case for the use of preview control. Therefore, the aim of this work is to formulate a modular MPC layer on top of a given output‐feedback blade‐pitch controller, with a view to retaining the closed‐loop robustness and frequency‐domain performance of the latter. The separate nature of the proposed controller structure enables clear and transparent quantification of the benefits gained by using preview control, beyond that of the underlying feedback controller. This is illustrated by results obtained from high‐fidelity closed‐loop turbine simulations, showing the proposed control scheme incorporating knowledge of the oncoming wind and constraints achieved significant 43% and 30% reductions in the rotor speed and flap‐wise blade moment standard deviations, respectively. Additionally, the chance of constraint violations on the rotor speed decreased remarkably from 2.15% to 0.01%, compared to the nominal controller. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the flow field in the rotor plane of a full‐scale operating wind turbine using full‐scale light detection and ranging (LiDAR) measurements for the first time. Comparison of the measured flow field with results from large eddy simulations (LES) combined with an actuator line approach is also presented for in‐depth study of the induction field in the rotor plane. The measurements include data from two synchronized LiDAR systems—one scanning the undisturbed upstream inflow field and one measuring in the rotor plane. The standard deviation of the mean of velocity time series are and presented as a measure of reliability. The method for calculating the axial velocity based on the line‐of‐sight velocity is explained and the uncertainty of such method is presented. The process of calculating the yaw misalignment is described. The time‐averaged and phase‐averaged axial velocity and induction factors are presented relative to radius and azimuth, and the general behavior is described relative to the flow regimes around the blades, tower and nacelle. Simulations and measurements are compared with special emphasis on the flow structures in the vicinity of the individual rotor blades. A convincing agreement between measurements and simulations is demonstrated. The uncertainties originated from the imprecise positions and angles of the measurement instruments are shown. The uncertainties are limited to the middle parts of the blades between 15 m to 25 m from the root. In addition, longer selected time series show smaller uncertainties. This proves the reliability of the application of the methodology for even longer time series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号