首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic loads on the rollers inside the bearings of large wind turbine gearboxes operating under transient conditions are presented with a focus on identifying conditions leading to slippage of rollers. The methodology was developed using a multi‐body model of the drivetrain coupled with aeroelastic simulations of the wind turbine system. A 5 MW reference wind turbine is considered for which a three‐stage planetary gearbox is designed on the basis of upscaling of an actual 750 kW gearbox unit. Multi‐body dynamic simulations are run using the ADAMS software using a detailed model of the gearbox planetary bearings to investigate transient loads inside the planet bearing. It was found that assembly and pre‐loading conditions have significant influence on the bearing's operation. Also, the load distribution in the gearbox bearings strongly depends on wind turbine operation. Wind turbine start‐up and shut‐down under normal conditions are shown to induce roller slippage, as characterized by loss of contacts and impacts between rollers and raceways. The roller impacts occur under reduced initial pre‐load on opposite sides of the load zone followed by stress variation, which can be one of the potential reasons leading to wear and premature bearing failures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Y. Guo  J. Keller 《风能》2018,21(2):139-150
Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high‐speed parallel‐stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. This paper examined wind turbine gearbox high‐speed shaft bearing loads and stresses through modeling and full‐scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure‐torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.  相似文献   

3.
J. Helsen  Y. Guo  J. Keller  P. Guillaume 《风能》2016,19(12):2255-2269
This work investigates the behaviour of the high‐speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full‐scale wind turbine nacelle is used. A combination of external and internal gearbox measurements are analysed. Particular focus is on the characterization of the high‐speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as a potential bearing failure initiator; however, only limited full‐scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing behaviour in detail. It is shown that during the transient event the high‐speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals, indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The emphasis in this article is on the impact of fault ride‐through requirements on wind turbines structural loads. Nowadays, this aspect is a matter of high priority as wind turbines are required more and more to act as active components in the grid, i.e. to support the grid even during grid faults. This article proposes a computer approach for the quantification of the wind turbines structural loads caused by the fault ride‐through grid requirements. This approach, exemplified for the case of a 2MW active stall wind turbine, relies on the combination of knowledge from complimentary simulation tools, which have expertise in different specialized wind turbines design areas. Two complimentary simulation tools are considered i.e. the detailed power system simulation tool PowerFactory from DIgSILENT and the advanced aeroelastic computer code HAWC2, in order to assess of the dynamic response of wind turbines to grid faults. These two tools are coupled sequently in an offline approach, in order to achieve a thorough insight both into the structural as well as the electrical wind turbine response during grid faults. The impact of grid requirements on wind turbines structural loads is quantified by performing a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively. Two cases are compared i.e. one where the turbine is immediately disconnected from the grid when a grid fault occurs and one where the turbine is equipped with a fault ride‐through controller and therefore it is able to remain connected to the grid during the grid fault. Copyright copy; 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Noise and vibration issues can be dealt with using several approaches. Using the source–transfer path–receiver approach, a vibration issue could be solved by attenuating the source, modifying the transfer path or by influencing the receiver. Applying this approach on a wind turbine gearbox would respectively correspond with lowering the gear excitation levels, modifying the gearbox housing or by trying to isolate the gearbox from the rest of the wind turbine. This paper uses a combination of multi‐body modelling and typical transfer path analysis (TPA) to investigate the impact of bearings on the total transfer path and the resulting vibration levels. Structural vibrations are calculated using a flexible multi‐body model of a three‐stage wind turbine gearbox. Because the high‐speed mesh is often the main source of vibrations, focus is put on the four bearings of this gear stage. The TPA method using structural vibration simulation results shows which bearing position is responsible for transmitting the highest excitation levels from the gears to the gearbox housing structure. Influences of bearing stiffness values and bearing damping values on the resulting vibration levels are investigated by means of a parameter sensitivity study and are confirmed with the results from the TPA. Because both the TPA and the parameter sensitivity analysis revealed a big influence on radial stiffness for a certain bearing, this was investigated in more detail and showed the big importance of correct axial bearing position. The main conclusions of this paper are that the total vibration behaviour of a wind turbine gearbox can be altered significantly by changing both bearing properties such as stiffness, damping and position, and bearing support stiffness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Non‐torque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling and experimental approaches to evaluate two distinct drivetrain designs that minimize the effects of non‐torque loads on gearbox reliability: a modified three‐point suspension drivetrain studied by the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) and the Pure Torque® drivetrain developed by Alstom. In the original GRC drivetrain, the unequal planetary load distribution and sharing were present and they can lead to gear tooth pitting and reduce the lives of the planet bearings. The NREL GRC team modified the original design of its drivetrain by changing the rolling element bearings in the planetary gear stage. In this modified design, gearbox bearings in the planetary gear stage are anticipated to transmit non‐torque loads directly to the gearbox housing rather than the gears. Alstom's Pure Torque drivetrain has a hub support configuration that transmits non‐torque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces and the resulting drivetrain loads. In Alstom's Pure Torque drivetrain, main shaft bending loads are orders of magnitude lower than the rated torque and hardly affected by wind speed, gusts or turbine operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
An analytical formulation was developed to estimate the load‐sharing and planetary loads of a three‐point suspension wind turbine drivetrain considering the effects of non‐torque loads, gravity and bearing clearance. A three‐dimensional dynamic drivetrain model that includes mesh stiffness variation, tooth modifications and gearbox housing flexibility was also established to investigate gear tooth load distribution and non‐linear tooth and bearing contact of the planetary gears. These models were validated with experimental data from the National Renewable Energy Laboratory's Gearbox Reliability Collaborative. Non‐torque loads and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox loads and disturb load sharing. Clearance in the carrier bearings reduces the bearing stiffness significantly. This increases the amount of pitching moment transmitted from the rotor to the gear meshes and disturbs the planetary load share, thereby resulting in edge loading. Edge loading increases the likelihood of tooth pitting and planet‐bearing fatigue, leading to reduced gearbox life. Additionally, at low‐input torque, the planet‐bearing loads are often less than the minimum recommended load and thus susceptible to skidding. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
B. J. Gould  D. L. Burris 《风能》2016,19(6):1011-1021
Recent studies suggest that wind shear and the resulting pitch moments increase bearing loads and thereby contribute to premature wind turbine gearbox failure. In this paper, we use momentum‐based modeling approaches to predict the pitch moments from wind shear. The non‐dimensionalized results, which have been validated against accepted aeroelastic results, can be used to determine thrust force, pitch moment and power of a general rotor as a function of the wind shear exponent. Even in extreme wind shear (m = 1), the actual thrust force and power for a typical turbine (R* < 0.5) were within 8% and 20% of the nominal values (those without wind shear), respectively. The mean pitch moment increased monotonically with turbine thrust, rotor radius and wind shear exponent. For extreme wind shear (m = 1) on a typical turbine (R* = 0.5), the mean pitch moment is ~25% the product of thrust force and rotor radius. Analysis of wind shear for a typical 750 kW turbine revealed that wind shear does not significantly affect bearing loads because it counteracts the effects of rotor weight. Furthermore, even though general pitch moments did significantly increase bearing loads, they were found to be unlikely to cause bearing fatigue. Analyses of more common low wind‐speed cases suggest that bearing under‐loading and wear are more likely to contribute to premature bearing failure than overloading and classical surface contact fatigue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The design of a wind turbine implies the simulation of definite conditions as specified in the standards. Among those operational conditions, rare events such as extreme gusts or external faults are included, which may cause high structural loads. Such extreme design load cases usually drive the design of some of the main components of the wind turbine: tower, blades and mainframe. Two different strategies are hence presented to mitigate the loads, deriving from extreme load cases, on the basis of the detection of wind gusts by means of ad hoc synthesized artificial neural networks. This tool is embedded into the main control algorithm and allows it to detect the gust in advance, to anticipate the control reaction, and by doing so reducing extreme loads. One of the strategies performs a controlled stop when wind gust is detected. The other rides through wind gusts without stopping, i.e., without affecting the wind turbine normal operation. Aeroelastic simulations of the Alstom Wind's wind turbines using these techniques have shown significant reductions in the extreme loads for all standard IEC 61400‐1, edition 2 DLC 1.6 cases. In particular, the overall ultimate loads are largely reduced for blade root and tower base bending moments, with a direct impact on the structural design of those components. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Emphasis in this article is on the design of a co‐ordinated voltage control strategy for doubly fed induction generator (DFIG) wind turbines that enhances their capability to provide grid support during grid faults. In contrast to its very good performance in normal operation, the DFIG wind turbine concept is quite sensitive to grid faults and requires special power converter protection. The fault ride‐through and grid support capabilities of the DFIG address therefore primarily the design of DFIG wind turbine control with special focus on power converter protection and voltage control issues. A voltage control strategy is designed and implemented in this article, based on the idea that both converters of the DFIG (i.e. rotor‐side converter and grid‐side converter) participate in the grid voltage control in a co‐ordinated manner. By default the grid voltage is controlled by the rotor‐side converter as long as it is not blocked by the protection system, otherwise the grid‐side converter takes over the voltage control. Moreover, the article presents a DFIG wind farm model equipped with a grid fault protection system and the described co‐ordinated voltage control. The whole DFIG wind farm model is implemented in the power system simulation toolbox PowerFactory DIgSILENT. The DFIG wind farm ride‐through capability and contribution to voltage control in the power system are assessed and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a DFIG wind farm equipped with voltage control can help a nearby active stall wind farm to ride through a grid fault, without implementation of any additional ride‐through control strategy in the active stall wind farm. Copyright © 2006 John Wiley &Sons, Ltd.  相似文献   

11.
This paper presents a new robust and effective control strategy to mitigate symmetrical voltage dips in a grid‐connected doubly fed induction generator (DFIG) wind energy conversion system without any additional hardware in the system. The aim is to control the power transmitted to the grid so as to keep the electrical and mechanical quantities above their threshold protection values during a voltage dip transient. To achieve this, the references of the powers are readjusted to adapt the wind energy conversion system to the fault conditions. Robust control strategies, combining the merits of sliding mode theory and fuzzy logic, are then proposed in this paper. These controllers are derived from the dynamic model of the DFIG considering the variations in the stator flux generated by the voltage drop. This approach is found to yield better performance than other control design methods which assume the flux in the stator to remain constant in amplitude. This control scheme is compliant with the fault‐ride‐through grid codes which require the wind turbine generator to remain connected during voltage dips. A series of simulation scenarios are carried out on a 3‐MW wind turbine system to demonstrate the effectiveness of the proposed control schemes under voltage dips and parameter uncertainty conditions.  相似文献   

12.
Rolling bearings are a part of every wind‐turbine transmission. In terms of bearing design, the bearing rings are of particular interest. The current trend for increasing power and dynamic stress, together with the associated increases in specific loads, have brought creep―an irreversible relative motion between bearing rings and shafts or housings―to the forefront. Creep leads to wear and can cause shaft displacements with serious consequences for the meshing of teeth in gearboxes, for example. In fact, many insurance companies cite the creep of bearing rings as one of the main causes of wind‐turbine gearbox failures. This article presents a complex kinematic 3D FE multi‐body simulation of a rolling bearing. This simulation makes a detailed analysis of the relative motion or creep of bearing rings possible for the first time. It also presents options, based on materials technology and design, for reducing or eliminating creep in existing systems or at the product‐development phase. The 2 key solutions, both based on an additional layer between bearing and housing, that show best results are presented within this article. This gives the user specific information for optimizing the bearing structure with respect to the choice of bearing and bearing ring design to ensure that future damage is prevented.  相似文献   

13.
Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride‐through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride‐through grid faults. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
目的  为改进半直驱风电系统的故障电压穿越(Flexible Fault Ride Through, FFRT)能力,提出采用电网故障时无功优先的改进网侧控制策略。 方法  在分析传统网侧控制策略的基础上,根据最新的故障电压穿越能力测试规程在传统网侧控制加入无功优先控制,在电网暂态故障期间优先向电网注入无功电流支撑电网电压恢复。根据改进网侧控制策略,对电网深度跌落和升高时采用卸荷电路结合改进网侧控制策略实现了风电机组的FFRT仿真运行,结合某项目6 MW半直驱风电机组,采用移动故障电压穿越测试设备进行故障电压现场测试。 结果  测试和仿真结果表明,改进网侧控制策略可提升半直驱风电系统的FFRT运行,无功电流稳定控制。 结论  改进网侧控制策略可在多种对称低电压/高电压故障工况和不对称高电压故障工况下优先向电网注入对应的稳定无功电流,有利于辅助电网电压恢复和提升半直驱风电系统的FFRT能力。  相似文献   

15.
This paper investigates the impact that unbalanced voltage faults have on wind turbine structural loads. In such cases, electromagnetic torque oscillations occur at two times the supply voltage frequency. The objectives of this work are to quantify wind turbine structural loads induced by unbalanced voltage faults relative to those during normal operation; and to evaluate the potential for reducing structural loads with the control of the generator. The method applied is integrated dynamic analysis. Namely, dynamic analysis with models that consider the most important aeroelastic, electrical, and control dynamics in an integrated simulation environment based on an aeroelastic code (HAWC2) and software for control design (Matlab/Simulink). In the present analysis, 1 Hz equivalent loads are used to compare fatigue loads, whereas maximum–minimum values are used to compare extreme loads. A control concept based on resonant filters demonstrates reduction of the structural loads (shaft torsion and tower top side‐to‐side moment) induced by an unbalanced voltage fault.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The adverse effect of transient torque reversals (TTRs) on wind turbine gearboxes can be severe due to their magnitude and rapid occurrence compared with other equipment. The primary damage is caused to the bearings as the bearing loaded zone rapidly changes its direction. Other components are also affected by TTRs (such as gear tooth); however, its impact on bearings is the largest. While the occurrence and severity of TTRs are acknowledged in the industry, there is a lack of academic literature on their initiation, propagation and the associated risk of damage. Furthermore, in the wide range of operation modes of a wind turbine, it is not known which modes can lead to TTRs. Further, the interdependence of TTRs on environmental loading like the wind is also not reported. This paper aims to address these unknowns by expanding on the understanding of TTRs using a high-fidelity numerical model of an indirect drive wind turbine with a doubly fed induction generator (DFIG). To this end, a multibody model of the drivetrain is developed in SIMPACK. The model of the drivetrain is explicitly coupled to state-of-the-art wind turbine simulator OpenFAST and a grid-connected DFIG developed in MATLAB®'s Simulink® allowing a coupled analysis of the electromechanical system. A metric termed slip risk duration is proposed in this paper to quantify the risk associated with the TTRs. The paper first investigates a wide range of IEC design load cases to uncover which load cases can lead to TTRs. It was found that emergency stops and symmetric grid voltage drops can lead to TTRs. Next, the dependence of the TTRs on inflow wind parameters is investigated using a sensitivity analysis. It was found that the instantaneous wind speed at the onset of the grid fault or emergency shutdown was the most influential factor in the slip risk duration. The investigation enables the designer to predict the occurrence of TTRs and quantify the associated risk of damage. The paper concludes with recommendations for utility-scale wind turbines and directions for future research.  相似文献   

17.
Clemens Jauch 《风能》2007,10(3):247-269
In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full‐scale converter‐connected high‐speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full‐scale converter‐connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Wind turbine manufacturers are required by transmission system operators for fault ride‐through capability as the penetration of wind energy in the electrical systems grows. For this reason, testing and modeling of wind turbines and wind farms are required by the national grid codes to verify the fulfillment of this capability. Therefore, wind turbine models are required to simulate the evolution of voltage, current, reactive and active power during faults. The simulation results obtained from these wind turbine models are used for verification, validation and certification against the real wind turbines measurement results, although evolution of electrical variables during the fault and its clearance is not easy to fulfill. The purpose of this paper is to show the different stages involved in the fulfillment of the procedure of operation for fault ride‐through capability of the Spanish national grid code (PO 12.3) and the ‘procedure for verification, validation and certification of the requirements of the PO 12.3 on the response of wind farms in the event of voltage dips’. The process has been applied to a wind farm composed of Gamesa G52 wind turbines, and the results obtained are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this study is to provide a simplified model of a variable‐speed wind turbine (VSWT) with the technology of a doubly fed induction generator (DFIG), which operates under faulty grid conditions. A simplified model is proposed, which consists of a set of electrical and mechanical equations that can be easily modeled as simplistic electrical circuits. It makes it an excellent tool to achieve fault ride‐through capability of grid‐connected VSWT with DFIGs. Both symmetrical and unsymmetrical grid faults, which cause symmetrical and unsymmetrical voltage sags, have been applied to the system in order to validate the model. The proposed simplified model has been compared with the traditional full‐order model under multiple sags (different durations and depths), and the results reveal that both models present similar accuracy. As the idea is to reduce the computational time required to simulate the machine behavior under faulty grid conditions, the proposed model becomes suitable for that purpose. The analytical study has been validated by simulations carried out with MATLAB .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号