首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Floating offshore wind (FOW) is a renewable energy source that is set to play an essential role in addressing climate change and the need for sustainable development. However, due to the increasing threat of climate emergency, more wind turbines are required to be deployed in deep water locations, further offshore. This presents heightened challenges for accessing the turbines and performing maintenance, leading to increased costs. Naturally, methods to reduce operational expenditure (OpEx) are highly desirable. One method that shows potential for reducing OpEx of FOW is LIDAR-assisted pitch control. This approach uses wind velocity measurements from a nacelle-mounted LIDAR to enable feedforward control of floating offshore wind turbines (FOWTs) and can result in reductions to the variations of structural loads. Results obtained from a previous study of combined feedforward collective and individual pitch control (FFCPC + FFIPC) are translated to OpEx reductions via reduced component failure rates for future FOW developments, namely, in locations awarded in the recent ScotWind leasing round. The results indicate that LIDAR-assisted pitch control may allow for an up to 5% reduction in OpEx, increasing to up to 11% with workability constraints included. The results varied across the three ScotWind sites considered, with sites furthest from shore reaping the greatest benefit from LIDAR-assisted control. This work highlights the potential savings and reduction in the overall levelised cost of energy for future offshore wind turbine projects deliverable through the implementation of LIDAR-assisted pitch control.  相似文献   

2.
    
  相似文献   

3.
    
The strong growth within the wind technology market, underpinned by policy goals around the world, has highlighted the demand for advanced engineering analysis to improve wind turbine (WT) design, both in terms of reliability and design of larger turbines. This paper presents a review of the latest research that has been carried out in modeling and analysis of load transmission in WT drive train systems and their components. Common failure roots are elaborated, and probable hypotheses are presented. A modeling approach is derived by classification into engineering, mathematical and computational models with a focus on gearbox modeling efforts. Precise understanding of drive train system dynamics and load transmission is necessary for a cost efficient and robust system design to enhance reliability and reduce the maintenance costs. Design optimization of WTs and their subsystems will make future WTs more attractive compared with fossil and nuclear power plants, and it is therefore an important issue for a more sustainable environment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
    
This article presents a Bayesian reliability modelling approach for wind turbines that incorporates the effect of time-dependent variables. Namely, the technique is used to explore the effect of annual services on wind turbine failure intensity through time for turbines within a currently operational wind farm. In the operator's experience, turbines seemed to fail more frequently after scheduled maintenance was performed; however, this is an unexplored effect in the literature. Additionally, the effects of seasonality, year of operation and position in the array on failure intensity are explored. These features were included in a Cox-like model formulation which allows for time-dependent covariates. Inference was performed via Bayes rule. Results show a spike in failure intensity reaching 1.57 times the baseline in the six days directly proceeding annual servicing, after which failure intensity is reduced compared to baseline. Also observed is a significant year-on-year reduction of failure intensity since the introduction of the site's data management system in 2018, a clear preference for modelling time to failure via a Weibull distribution and a dependence on location in the array with respect to the prominent wind direction. Results also show the benefit of employing a Bayesian regime, which provides easily interpretable uncertainty quantification.  相似文献   

5.
以某兆瓦级风电机组为例,根据德国劳埃德2010版风机认证规范要求,绘制了机组传动链动力学拓扑图,建立了包含多自由度刚柔部件的机组传动链模型。根据传动链模型,进行了频域分析,得到了机组传动链模态频率,绘制了二维Campbell图,找到了传动链潜在共振点,并通过时域扫频分析,验证了共振点的分析结果。与Bladed结果进行比较,验证了仿真分析结果的正确性。  相似文献   

6.
张文忠  秦海岩 《风能》2012,(8):42-44
作为衡量风电机组质量优劣的关键性经济指标,风电机组整个使用寿命周期内的运维费用,有必要纳入到风电机组招标评价体系中,杜绝投标过程中的低价竞争现象。通过建立风电机组质量量化评价体系,引导厂商提升质量,为业主提供产品选择标准,为金融保险提供评估依据。  相似文献   

7.
    
Wind energy technology is evolving towards larger machines (longer blades, taller towers and more powerful generators). Scaling up wind turbines is a challenging task, which requires innovative solutions as well as new configurations and designs. The size of wind turbines (in terms of rotor diameter, hub height and rated power) has increased extraordinary from 30 m rotor diameter, 30 m of hub height and 300 kW rated power, usual in the late 1980s, to 92.7 m rotor diameter, 87.7 m of height and 2.1 MW on average at the end of 2014. However, technological evolution has not only been focused on the scaling up process but also on developing innovative solutions that minimize costs at the same time as they deal with aspects of different nature, such as grid code requirements, reliability, quality of the wind resource or prices and availability of certain commodities, among others. This paper analyses the evolution of wind technology from a market‐based perspective by identifying trends in the most relevant technological indicators at the same time as stressing the key differentiating aspects between regions/markets. Evolution and trends in indicators such as rated power, rotor diameter, hub height, specific power, wind class, drive train configuration and power control systems are presented and analysed, showing an intense and fast technological development, which is enabling wind energy to reduce costs and becoming increasingly more competitive with conventional fuel‐based generating technologies. © 2016 The Authors Wind Energy Published by John Wiley & Sons Ltd.  相似文献   

8.
    
As many of the installed wind turbines (WTs) get older or approach their design life, there will be a drive to keep extending the lives of the main components especially the gearbox. The challenge of operations and maintenance will potentially be even more as there will be a need to keep the cost to a minimum. Similarly, as years of experience of operating WTs accumulate, knowledge about the behaviour and failure of subsystems is gained as well. Also with good documentation and repository of historical operational, performance and failure data, future decisions of operations and maintenance can be taken on the basis of insights from past experience. This paper presents an approach for implementing preventive maintenance (PM) by using historical failure data to determine the optimal PM interval required to maintain desired reliability of a typical module or subassembly. This paper builds upon previous research in the area of WT gearbox reliability analysis and prediction, taking it further by examining the relationships between the frequency of a PM task and the reliability, availability and maintenance costs. The approach presented demonstrates how historical in‐service failure data can be used in PM task selection based on the minimum maintenance cost and maximum availability. Available historical field failure data of the high speed module of a Vestas 2MW WT gearbox is used to validate the approach and show its practicality. The results of this study are then presented—indicating that choosing the right PM interval based on the minimum unit maintenance cost and maximum availability also improves WT gearbox reliability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
  目的  在加快推动沿海能源清洁化转型、调整产业结构趋势下,海上风电由于其风资源丰富、利用小时数高、消纳便利等优点,将成为沿海省份电力能源安全、清洁、高效转型的重要支撑。  方法  文章对海上风电产业现状与未来发展前景进行全面分析,预测了未来近海浅水区和深远海海风产业综合降本的趋势。  结果  结果表明,广东海域“十四五”期间能否实现平价上网与年均综合降本速度相关;广东部分风资源条件较好的深远海项目至“十四五”末期能够实现平价上网,同时在规模效应下仍有进一步降本空间。  结论  我国海上风电产业链逐步完善,但仍有许多关键部件、核心技术依赖进口,需要不断开展国产化研究,实现产业成本的有效降低。  相似文献   

10.
覃韩  汪至中  荆龙 《能源研究与信息》2007,23(4):221-224,230
针对风电机组的变流系统,在分析变流电路和以前运行出现的问题的基础上,提出了一套风电机组PWM四象限变流器的驱动、缓冲吸收及保护电路。详细论述了驱动及保护电路设计的必要性和重要性,并给出了用Protel设计的电路和各个重要参数,旨在提高了风电机组变流系统运行的可靠性,减少损失。  相似文献   

11.
    
Improving the reliability of wind turbines (WT) is an essential component in the bid to minimize the cost of energy, especially for offshore wind because of the difficulties associated with access for maintenance. Numerous studies have shown that WT gearbox and generator failure rates are unacceptably high, particularly given the long downtime incurred per failure. There is evidence that bearing failures of the gearbox high‐speed stage (HSS) and generator account for a significant proportion of these failures. However, the root causes of these failure data are not known, and there is therefore a need for fundamental computational studies to support the valuable ‘top down’ reliability analyses. In this paper, a real (proprietary) 2 MW geared WT was modelled to compute the gearbox–generator misalignment and predict the impact of this misalignment upon the gearbox HSS and generator bearings. At rated torque, misalignment between the gearbox and generator of 8500 µm was seen. For the 2 MW WT analysed, the computational data show that the L10 fatigue lives of the gearbox HSS bearings were not significantly affected by this misalignment but that the L10 fatigue lives of the generator bearings, particularly the drive‐end bearing, could be significantly reduced. It is proposed to apply a nominal offset to the generator to reduce the misalignment under operation, thereby reducing the loading on the gearbox HSS and generator bearings. The value of performing integrated system analyses has been demonstrated, and a robust methodology has been outlined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
    
Understanding the availability of wind turbines (WT) is vital to maximize WT energy production and minimize the capital payback period. Previous work on this subject concentrated on reliability and the location of WT failure modes rather than root causes. This paper concentrates on the influence of weather and WT location on failure rate and downtime, to try to understand root causes and the consequences of failure. The paper goes further than a previous study, which used Windstats data from the whole of Denmark, by considering a limited population of identical WTs at three locations on the German Nordzee, Ostzee and in western Germany, using data from WMEP and local weather stations. This new study focuses more precisely than the previous study by using more reliable data. The data were analysed to find the WT failures and weather conditions and then cross‐correlate them. To confirm their representativeness, the reliability characteristics of these smaller WT populations followed the average trends of the overall WMEP survey. However, clear differences were observed in the failure behaviour of the WTs at the three locations. Annual periodicity was seen in the weather data, as expected, but not in individual WT population failure data. However, clear cross‐correlations can be seen between WT failures and weather data, in particular wind speed, maximum temperature and humidity. These cross‐correlations were more convincing than those found in the earlier, larger Danish study, vindicating the more focused approach. It is also clear from the analysis that Operation & Maintenance also has an impact on WT failure rates. These factors will be important for the operation of offshore WTs with the work indicating how weather conditions may affect offshore WT failure rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
    
Risk of hurricane damage is an important factor in the development of the offshore wind energy industry in the United States. Hurricane loads on an offshore wind turbine (OWT), namely wind and wave loads, not only exert large structural demands, but also have temporally changing characteristics, especially with respect to their directions. Waves are less susceptible to rapid changes, whereas wind can change its properties over shorter time scales. Misalignment of local winds and ocean waves occurs regularly during a hurricane. The strength capacity of non‐axisymmetric structures such as jackets is sensitive to loading direction and misalignment relative to structural orientation. As an example, this work examines the effect of these issues on the extreme loads and structural response of a non‐operational OWT during hurricane conditions. The considered OWT is a 5 MW turbine, supported by a jacket structure and located off the Massachusetts coast. A set of 1000 synthetic hurricane events, selected from a catalog simulating 100,000 years of hurricane activity, is used to represent hurricane conditions, and the corresponding wind speeds, wave heights and directions are estimated using empirical, parametric models for each hurricane. The impact of wind and wave directions and structural orientation are quantified through a series of nonlinear static analyses under various assumptions for combining the directions of wind and wave and structural orientation for the considered example structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
    
Understanding of power losses and turbulence increase due to wind turbine wake interactions in large offshore wind farms is crucial to optimizing wind farm design. Power losses and turbulence increase due to wakes are quantified based on observations from Middelgrunden and state‐of‐the‐art models. Observed power losses due solely to wakes are approximately 10% on average. These are relatively high for a single line of wind turbines due in part to the close spacing of the wind farm. The wind farm model Wind Analysis and Application Program (WAsP) is shown to capture wake losses despite operating beyond its specifications for turbine spacing. The paper describes two methods of estimating turbulence intensity: one based on the mean and standard deviation (SD) of wind speed from the nacelle anemometer, the other from mean power output and its SD. Observations from the nacelle anemometer indicate turbulence intensity which is around 9% higher in absolute terms than those derived from the power measurements. For comparison, turbulence intensity is also derived from wind speed and SD from a meteorological mast at the same site prior to wind farm construction. Despite differences in the measurement height and period, overall agreement is better between the turbulence intensity derived from power measurements and the meteorological mast than with those derived from data from the nacelle anemometers. The turbulence in wind farm model indicates turbulence increase of the order 20% in absolute terms for flow directly along the row which is in good agreement with the observations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
    
Clemens Jauch 《风能》2007,10(3):247-269
In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full‐scale converter‐connected high‐speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full‐scale converter‐connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
文章针对风电机组齿轮箱油温劣化特征识别问题,提出了一种基于工况细化的异常变化检测和故障早期预警方法.该方法根据风机叶轮转速将机组运行数据进行细化分仓,在每个叶轮转速仓中建立基于概率统计分析的齿轮箱油温正常行为模型并设定其温度分布和温升变化的异常阈值;然后对现场机组齿轮箱油温变化进行监测,利用时序滑动窗口的评估方式实现风...  相似文献   

17.
    
The aim of the work is to derive a steady state PQ‐diagram for a variable speed wind turbine equipped with a Doubly Fed Induction Generator. Firstly, the dependency between optimal rotor speed and wind speed is presented. Secondly, the limitations in reactive power production, caused by the rotor current, the rotor voltage and the stator current are derived. Thirdly, the influence of switching from Δ to Y coupling of the stator is investigated. Finally, a complete PQ diagram for a wind turbine is plotted. It is concluded that the limiting factor regarding reactive power production will typically be the rotor current limit, and that the limit for reactive power absorption will be the stator current limit. Further, it is concluded that the rotor voltage will only have a limiting effect at high positive and negative slips, but near the limitation, the reactive power capability is very sensitive to small changes in the slip. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
    
This work develops an optimization algorithm for the definition of gear microgeometry modifications (MGM) on a gearbox belonging to an offshore 10-MW wind turbine. Subsequently, the impact of the gear microgeometry on the performance of gears and bearings is quantified: First, under rated load conditions and, second, accounting for the environmental conditions to estimate the long-term damage. To fulfil this task, a high-fidelity numerical model of the drivetrain is used, which meets the design requirements of the Technical University of Denmark (DTU) 10-MW reference offshore wind turbine. The optimization achieves a uniform distribution of the contact stress along the tooth flank, shifts its maximum value to the central position, and eliminates edge contact. These enhancements increase the gear safety factors. Nevertheless, the most significant improvement concerns planetary bearings, for which optimum gear MGM achieve a homogeneous share of the load among bearings. Moreover, deviations of the microgeometry with respect to the defined optimum are also addressed. In gears, lead slope deviations are counteracted by crowning modifications to restrain the increase of the load offset. Concerning planetary bearings, slope deviations can be beneficial or detrimental depending on whether they overload downwind or upwind planetary bearings, respectively. Finally, accumulated damage to planetary bearings after 20 years of service is assessed. Before MGM, results predict a premature failure of planetary bearings, while optimum MGM extend their predicted life above 20 years by achieving a reduction of the maximum accumulated fatigue damage by a factor of 4.4.  相似文献   

19.
    
One of the primary criteria for extracting energy from the wind using horizontal axis upwind wind turbines is the ability to align the rotor axis with the dominating wind direction. The conventional way of estimating the direction of the incoming flow is by using transducers placed atop the nacelle and downwind of the rotor. Recent studies have suggested methods based on advanced upwind measurement technologies for estimating the inflow direction and improving the yaw alignment. In this study, the potential of increased power output with improved yaw alignment is investigated by assessing the performance of a current measurement and yaw control system. The performance is assessed by analyzing data containing upwind wind speed and direction measurements from a met mast, and yaw angle and power production measurements from an operating offshore wind turbine. The results of the analysis indicate that the turbine is operating with a wind speed‐dependent yaw error distribution. The theoretical annual energy production loss due to the yaw error distribution of the existing system is estimated to approximately 0.2%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
海上风力发电进展   总被引:30,自引:0,他引:30  
近年来风力发电工业发展迅速,海上风能以其突出的优势受到重视。本文对近年来国外几种典型的海上风能资源评估方法做出述评,简要叙述了国外海上风电技术发展与应用的现状,分析了海上风能利用的经济性,并介绍了一些主要国家进一步发展海上风电的计划。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号